Spark算子:RDD行动Action操作(6)–saveAsHadoopFile、saveAsHadoopDataset

关键字:Spark算子、Spark函数、Spark RDD行动Action、Spark RDD存储操作、saveAsHadoopFile、saveAsHadoopDataset

saveAsHadoopFile

def saveAsHadoopFile(path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[_ <: OutputFormat[_, _]], codec: Class[_ <: CompressionCodec]): Unit

def saveAsHadoopFile(path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[_ <: OutputFormat[_, _]], conf: JobConf = …, codec: Option[Class[_ <: CompressionCodec]] = None): Unit

 

saveAsHadoopFile是将RDD存储在HDFS上的文件中,支持老版本Hadoop API。

可以指定outputKeyClass、outputValueClass以及压缩格式。

每个分区输出一个文件。

 
 
  1. var rdd1 = sc.makeRDD(Array(("A",2),("A",1),("B",6),("B",3),("B",7)))
  2.  
  3. import org.apache.hadoop.mapred.TextOutputFormat
  4. import org.apache.hadoop.io.Text
  5. import org.apache.hadoop.io.IntWritable
  6.  
  7. rdd1.saveAsHadoopFile("/tmp/lxw1234.com/",classOf[Text],classOf[IntWritable],classOf[TextOutputFormat[Text,IntWritable]])
  8.  
  9. rdd1.saveAsHadoopFile("/tmp/lxw1234.com/",classOf[Text],classOf[IntWritable],classOf[TextOutputFormat[Text,IntWritable]],
  10. classOf[com.hadoop.compression.lzo.LzopCodec])
  11.  

saveAsHadoopDataset

def saveAsHadoopDataset(conf: JobConf): Unit

saveAsHadoopDataset用于将RDD保存到除了HDFS的其他存储中,比如HBase。

在JobConf中,通常需要关注或者设置五个参数:

文件的保存路径、key值的class类型、value值的class类型、RDD的输出格式(OutputFormat)、以及压缩相关的参数。

 

##使用saveAsHadoopDataset将RDD保存到HDFS中

 
 
  1. import org.apache.spark.SparkConf
  2. import org.apache.spark.SparkContext
  3. import SparkContext._
  4. import org.apache.hadoop.mapred.TextOutputFormat
  5. import org.apache.hadoop.io.Text
  6. import org.apache.hadoop.io.IntWritable
  7. import org.apache.hadoop.mapred.JobConf
  8.  
  9.  
  10.  
  11. var rdd1 = sc.makeRDD(Array(("A",2),("A",1),("B",6),("B",3),("B",7)))
  12. var jobConf = new JobConf()
  13. jobConf.setOutputFormat(classOf[TextOutputFormat[Text,IntWritable]])
  14. jobConf.setOutputKeyClass(classOf[Text])
  15. jobConf.setOutputValueClass(classOf[IntWritable])
  16. jobConf.set("mapred.output.dir","/tmp/lxw1234/")
  17. rdd1.saveAsHadoopDataset(jobConf)
  18.  
  19. 结果:
  20. hadoop fs -cat /tmp/lxw1234/part-00000
  21. A 2
  22. A 1
  23. hadoop fs -cat /tmp/lxw1234/part-00001
  24. B 6
  25. B 3
  26. B 7
  27.  

##保存数据到HBASE

HBase建表:

create ‘lxw1234′,{NAME => ‘f1′,VERSIONS => 1},{NAME => ‘f2′,VERSIONS => 1},{NAME => ‘f3′,VERSIONS => 1}

 
 
  1. import org.apache.spark.SparkConf
  2. import org.apache.spark.SparkContext
  3. import SparkContext._
  4. import org.apache.hadoop.mapred.TextOutputFormat
  5. import org.apache.hadoop.io.Text
  6. import org.apache.hadoop.io.IntWritable
  7. import org.apache.hadoop.mapred.JobConf
  8. import org.apache.hadoop.hbase.HBaseConfiguration
  9. import org.apache.hadoop.hbase.mapred.TableOutputFormat
  10. import org.apache.hadoop.hbase.client.Put
  11. import org.apache.hadoop.hbase.util.Bytes
  12. import org.apache.hadoop.hbase.io.ImmutableBytesWritable
  13.  
  14. var conf = HBaseConfiguration.create()
  15. var jobConf = new JobConf(conf)
  16. jobConf.set("hbase.zookeeper.quorum","zkNode1,zkNode2,zkNode3")
  17. jobConf.set("zookeeper.znode.parent","/hbase")
  18. jobConf.set(TableOutputFormat.OUTPUT_TABLE,"lxw1234")
  19. jobConf.setOutputFormat(classOf[TableOutputFormat])
  20. var rdd1 = sc.makeRDD(Array(("A",2),("B",6),("C",7)))
  21. rdd1.map(x =>
  22. {
  23. var put = new Put(Bytes.toBytes(x._1))
  24. put.add(Bytes.toBytes("f1"), Bytes.toBytes("c1"), Bytes.toBytes(x._2))
  25. (new ImmutableBytesWritable,put)
  26. }
  27. ).saveAsHadoopDataset(jobConf)
  28.  
  29. ##结果:
  30. hbase(main):005:0> scan 'lxw1234'
  31. ROW COLUMN+CELL
  32. A column=f1:c1, timestamp=1436504941187, value=\x00\x00\x00\x02
  33. B column=f1:c1, timestamp=1436504941187, value=\x00\x00\x00\x06
  34. C column=f1:c1, timestamp=1436504941187, value=\x00\x00\x00\x07
  35. 3 row(s) in 0.0550 seconds
  36.  

注意:保存到HBase,运行时候需要在SPARK_CLASSPATH中加入HBase相关的jar包。

可参考:http://lxw1234.com/archives/2015/07/332.htm

 


更多关于Spark算子的介绍,可参考spark算子系列文章:

http://blog.csdn.net/ljp812184246/article/details/53895299

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值