四维超立方体在三维世界的动态投影(使用three.js)

原创 2015年07月07日 16:58:07

几个关键点:

1、泛正方体

二维中为方形:

-a<x<a , -a<y<a

三维中为正方体

-a<x<a , -a<y<a, -a<z<a

四维中为超立方体

-a<x<a,-a<y<a,-a<z<a,-a<m<a

可理解为我们的世界为m为0点处的四维世界,由于上述超立方体中x,y,z取值范围与m无关,当该超体与我们世界相交,即m取值在-a到a之中时,其他三维取值范围不变,在我们世界中始终未一个立方体。现通过正交变换对立方体进行旋转变换:

x=1,0,0,0

y=0,1,0,0

z=0,0,1,0

m=0,0,0,1

v1 = a1x+b1y+c1z+d1m

v2 = a2x+b2y+c2z+d2m

v3 = a3x+b3y+c3z+d3m

v4 = a4x+b4y+c4z+d4m

v1,v2,v3,v4两两正交

可得其中一解为

1,1,1,1

1,1,-1,-1

1,-1,1,-1

1,-1,-1,1

得表达式

-a<x+y+z+m<a ,-a< x+y-z-m<a, -a< x-y+z-m<a, -a< x-y-z+m<a

m取值在-a到a之中时,其他三维取值发生改变

以下为源代码(未经整理):

演示地址

点击打开链接

            var container;
            var renderer;
            var scene;
            var camera;
            var group;
            var i = 0;
            var t = -10;
            var swi_tch = 1;
            var daz = 0.2;


            function circle(){
                scene.remove(group);
                requestAnimationFrame(circle);


                camera.lookAt(scene.position);
                persSuperCube(t);
                if(swi_tch==1){
                    t = t + 0.5;
                    if(t>30){
                        swi_tch=0;
                    }
                }
                else{
                    t = t - 0.5;
                    if(t<-30){
                        swi_tch=1;
                    }
                }






            }






            function onKeyDown(e){
                //alert(e.keyCode);


                if(e.keyCode==32){
                    circle();
                }


            }




            function persSuperCube(t){
                group = new THREE.Group();
                var meshsss = [];
                for(var i=0;i<24;i++)
                    for(var j=0;j<24;j++)
                        for(var k=0;k<24;k++)
                            {
                                if(meshsss[i]==null){
                                    meshsss[i]=[];
                                }
                                if(meshsss[i][j]==null){
                                    meshsss[i][j]=[];
                                }
                                var x=i-12;
                                var y=j-12;
                                var z=k-12;
                                var m=t-12;
                                if(x+y+z+m>-12 && x+y+z+m<12 && x+y-z-m>-12 && x+y-z-m<12 && x-y+z-m>-12 && x-y+z-m<12 && x-y-z+m>-12 && x-y-z+m<12){
                                    meshsss[i][j][k]=new THREE.Mesh(
                                            new THREE.BoxGeometry(2, 2, 2 ),
                                            new THREE.MeshNormalMaterial( { overdraw: 0.5 } )
                                    );
                                    meshsss[i][j][k].position.x = 2*x;
                                    meshsss[i][j][k].position.y = 2*y;
                                    meshsss[i][j][k].position.z = 2*z;
                                    meshsss[i][j][k].matrixAutoUpdate = false;
                                    meshsss[i][j][k].updateMatrix();
                                    group.add(meshsss[i][j][k]);
                                }
                            }
                scene.add(group);


                renderer.render(scene,camera);
            }


            function init(){


                //document.addEventListener( 'keydown', onKeyDown, false );


                container = document.createElement( 'div' );
                document.body.appendChild( container );


                group = new THREE.Group();
                camera = new THREE.PerspectiveCamera( 45, window.innerWidth / window.innerHeight, 1, 10000 );


                camera.position.x = 140*Math.sin(Math.PI/4);
                camera.position.y = 140*Math.cos(Math.PI/4);
                camera.position.z = 150;


                camera.rotation.x = -Math.atan(camera.position.x/camera.position.z);
                camera.rotation.y = Math.atan(camera.position.y/camera.position.z);


                camera.rotation.x = -0.25 * Math.PI;
                camera.rotation.y = 0.25 * Math.PI;


                scene = new THREE.Scene();


                scene.add(camera);


                var x, y,z=0;
                var meshsss = [];
                for(var i=0;i<40;i++)
                    for(var j=0;j<40;j++)
                        for(var k=0;k<40;k++){
                            if(meshsss[i]==null){
                                meshsss[i]=[];
                            }
                            if(meshsss[i][j]==null){
                                meshsss[i][j]=[];
                            }
                            x=i-20;
                            y=j-20;
                            z=k-20;
                            if(x+y+z>-15 && x+y+z<15 && x-y+z>-15 && x-y+z<15 && -x+y+z>-15 && -x+y+z<15 && -x-y+z>-15 && -x-y+z<15){
                                meshsss[i][j][k]=new THREE.Mesh(
                                        new THREE.BoxGeometry(2, 2, 2 ),
                                        new THREE.MeshNormalMaterial( { overdraw: 0.5 } )
                                );
                                meshsss[i][j][k].position.x = 2*x;
                                meshsss[i][j][k].position.y = 2*y;
                                meshsss[i][j][k].position.z = 2*z;


                                meshsss[i][j][k].matrixAutoUpdate = false;
                                meshsss[i][j][k].updateMatrix();
                                group.add(meshsss[i][j][k]);
                            }
                }
                scene.add(group);
                var meshx = new THREE.Mesh(
                        new THREE.BoxGeometry(200, 1, 1 ),
                        new THREE.MeshNormalMaterial( { overdraw: 0.5 } )
                );
                meshx.position.x = 100;
                //meshx.rotation.z = 0.25 * Math.PI;
                meshx.matrixAutoUpdate = false;
                meshx.updateMatrix();
                scene.add(meshx);


                var meshy = new THREE.Mesh(
                        new THREE.BoxGeometry(1, 200, 1 ),
                        new THREE.MeshNormalMaterial( { overdraw: 0.5 } )
                );
                meshy.position.y = 100;
                //meshy.rotation.z = 0.25 * Math.PI;
                meshy.matrixAutoUpdate = false;
                meshy.updateMatrix();
                scene.add(meshy);


                var meshz = new THREE.Mesh(
                        new THREE.BoxGeometry(1, 1, 200 ),
                        new THREE.MeshNormalMaterial( { overdraw: 0.5 } )
                );
                meshz.position.z = 100;
                //meshz.rotation.x = 0.25 * Math.PI;
                meshz.matrixAutoUpdate = false;
                meshz.updateMatrix();
                scene.add(meshz);


                renderer = new THREE.CanvasRenderer();
                renderer.setClearColor( 0xffffff );
                //renderer.setPixelRatio( window.devicePixelRatio );
                renderer.setSize( window.innerWidth, window.innerHeight );
                container.appendChild( renderer.domElement );


                renderer.render(scene,camera);


                circle();
            }


  


相关文章推荐

THREE.js-几何体(Geometry)

这里将Geometry理解为几何体不知道是否合适。前面的例子中我们用到过BoxGeometry来创建一个立方体。除了BoxGeometry之外Three.js还提供了很多拆箱即用的几何体,例如:圆形(...

three.js 源码注释(二十七)Core/BufferGeometry.js

BufferGeometry类用来和BufferAttribute配合使用,更多细节可以参考官方的样例http://threejs.org/ 这个类是另一种创建几何体对象的方式,它将所有的数据包括顶...
  • omni360
  • omni360
  • 2014年11月28日 14:57
  • 3257

给定A, B两个整数,不使用除法和取模运算,求A/B的商和余数

给定A, B两个整数,不使用除法和取模运算,求A/B的商和余数。 1.   最基本的算法是,从小到大遍历: for (i = 2 to A -1)          if (i * B > A)...

利用K-means聚类算法根据经纬度坐标对中国省市进行聚类

K-means聚类算法是一种非层次聚类算法,在最小误差的基础上将数据划分了特定的类,类间利用距离作为相似度指标,两个向量之间的距离越小,其相似度就越高。程序读取全国省市经纬度坐标,然后根据经纬度坐标进...

Radon变换理论介绍与matlab实现--经验交流

本人最近在研究Radon变换,在查阅了各种资料之后在此写下个人的理解,希望与各位牛牛进行交流共同进步,也使得理解更加深刻些。 Radon变换的本质是将原来的函数做了一个空间转换,即,将原来的XY平...

Matlab绘图-很详细,很全面

Matlab绘图强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。此外,Ma...

CT图像重建技术

由于csdn贴图不方便,并且不能上传附件,我把原文上传到了资源空间CT图像重建技术 1.引言 计算机层析成像(Computed Tomography,CT)是通过对物体进行不同角度的射线投影测量而...

linux查找目录下的所有文件中是否含有某个字符串

查找目录下的所有文件中是否含有某个字符串  find .|xargs grep -ri "IBM"  查找目录下的所有文件中是否含有某个字符串,并且只打印出文件名  find .|xargs g...

Radon变换入门matlab CT原理

http://hi.baidu.com/hi9394/blog/item/0d492b8bfd714700c8fc7aa9.html 简介 图像投影,就是说将图像在某一方向上做线性积分(或理解为累...

Intel系列处理器的三种工作模式

Intel系列处理器的三种工作模式 微机中常用的Intel系列微处理器的主要发展过程是:8080,8086/8088,80186, 80286,80386,80486,Pentium,Pen...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:四维超立方体在三维世界的动态投影(使用three.js)
举报原因:
原因补充:

(最多只允许输入30个字)