机器学习中的判别模型和生成模型

原创 2016年08月29日 15:13:43

两个模型是啥

我们从几句话进入这两个概念:
1、机器学习分为有监督的机器学习和无监督的机器学习;
2、有监督的机器学习就是已知训练集数据的类别情况来训练分类器,无监督的机器学习就是不知道训练集的类别情况来训练分类器;
3、所以说,有监督的机器学习可以抽象为一个分类task,而无监督的基本完成的是聚类;
4、有监督的机器学习中,我们可以概述为通过很多有标记的数据,训练出一个模型,然后利用这个,对输入的X进行预测输出的Y。这个模型一般有两种:

决策函数:Y=f(X)
条件概率分布:P(Y|X)

5、根据通过学习数据来获取这两种模型的方法,我们可以分为判别方法和生成方法;

6、概念正式介绍

判别方法:由数据直接学习决策函数Y=f(X)或条件概率分布P(Y|X)作为预测模型,即判别模型。判别方法关心的是对于给定的输入X,应该预测什么样的输出Y。

数据直接学习决策函数Y=f(X)或条件概率分布P(Y|X)得到的预测模型,就是判别模型

生成方法:由数据学习联合概率分布P(X,Y), 然后由P(Y|X)=P(X,Y)/P(X)求出概率分布P(Y|X)作为预测的模型。该方法表示了给定输入X与产生输出Y的生成关系

P(Y|X)作为的预测的模型就是生成模型

两个模型的范例

生成模型:朴素贝叶斯、隐马尔可夫(em算法)
判别模型:k近邻法、感知机、决策树、逻辑回归、线性回归、最大熵模型、支持向量机(SVM)、提升方法、条件随机场(CRF)

对比

1、生成模型可以还原出联合概率分布(还原数据本身相似度),而判别方法不能;
2、生成方法的学习收敛速度更快,当样本容量增加的时候,学到的模型可以更快的收敛于真实模型;
3、当存在隐变量时,仍可以利用生成方法学习,此时判别方法不能用;
4、判别学习不能反映训练数据本身的特性,但它寻找不同类别之间的最优分类面,反映的是异类数据之间的差异,直接面对预测,往往学习的准确率更高,由于直接学习P(Y|X)或Y=f(X),从而可以简化学习;
5、简单的说,生成模型是从大量的数据中找规律,属于统计学习;而判别模型只关心不同类型的数据的差别,利用差别来分类。


参考文章:
http://blog.csdn.net/zouxy09/article/details/8195017
http://www.cnblogs.com/kaituorensheng/p/3379170.html
http://www.zhihu.com/question/20446337

版权声明:本文为博主原创文章,转载时请注明出处URL,谢谢大家~

相关文章推荐

机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用

朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选...

生成模型与判别模型

生成模型与判别模型 zouxy09@qq.com http://blog.csdn.net/zouxy09        一直在看论文的过程中遇到这个问题,折腾了不少时间,然后是下面的一点理解,...

生成模型 与 判别模型

判别式模型与生成式模型的区别 产生式模型(Generative Model)与判别式模型(Discrimitive Model)是分类器常遇到的概念,它们的区别在于: 对于输入x,...

判别式模型与生成式模型

判别式模型与生成式模型的区别 产生式模型(Generative Model)与判别式模型(Discrimitive Model)是分类器常遇到的概念,它们的区别在于: 对于输入x,类别标签y:...

RNN以及LSTM的介绍和公式梳理

前言好久没用正儿八经地写博客了,csdn居然也有了markdown的编辑器了,最近花了不少时间看RNN以及LSTM的论文,在组内『夜校』分享过了,再在这里总结一下发出来吧,按照我讲解的思路,理解RNN...

深度学习基础:RNN与LSTM

这一篇主要是想根据Google的Colah的文章《Understanding LSTM Networks》阐述一下什么是LSTM(Long Short Time Memory)网络。

CNN、RNN与LSTM(转)

神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosen...

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解

1、相关知识从广义上来说,NN(或是更美的DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。有很多人认为,它们并没有可比性,或是根本没必要放在一起比较。在实际应用中,所谓的深度神经网络DNN...

深度学习框架的比较(MXNet, Caffe, TensorFlow, Torch, Theano)

1. 比较表 2.详细描述

深度学习与自然语言处理之五:从RNN到LSTM

本文介绍了RNN和LSTM的基本技术原理及其在自然语言处理的应用。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)