关闭
当前搜索:

Linux下GCC 4.9.3安装

CentOS 6默认的GCC版本是4.4.7,而很多软件都需要依赖较高版本的GCC及其库文件。在这里介绍一种方法安装GCC 4.9.3。 先在网上下载gcc $ wget http://mirrors-usa.go-parts.com/gcc/releases/gcc-4.9.3/gcc-4.9.3.tar.bz2 -P ~/software/ 解压: $ tar jxf ~/soft......
阅读(11) 评论(0)

如何让贪婪的正则表达式变得不贪婪

正则表达式是一种模式匹配,通常被用来检索、替换那些符合某个模式(规则)的文本,非常好用,但是,有时间正则表达式很难“停”下来,因为这种模式匹配常常是贪婪的。 今天就来介绍一种让正则表达式“停”下了的方法。 line = "aabcccceebbb12345" 对这个字符串取bcccceeb。那么我们通常会用正则表示进行贪婪匹配,但是,稍不注意就会取成“bb”。 例如下面: re......
阅读(20) 评论(0)

Skearn预处理StandardScaler出现 ValueError 的错误

在用sklearn做机器学习的时候,我们经常要对数据进行预处理,而又经常使用标准化预处理数据,但是,使用StandardScaler有可能会出现ValueError 的错误。具体的错误如下面所示: 通过查看sklearn的帮助文档,发现:StandardScaler 能够接受 scipy.sparse 作为输入,只要参数 with_mean=False 被准确传入它的构造器。否则会出现 Va...
阅读(148) 评论(0)

安装freebayes所遇到的问题

今天,安装了一下用于生信软件freebayes,它用来calling SNP、haplotype的,具体的用法我们后面再探讨,今天主要谈谈在安装freebayes所遇到的问题,其实,这些问题在安装其他软件时,也会遇到。一叶便知秋!下面就具体谈谈是什么问题。 首先你得安装git模块,进行直接网上下载git文档。然后使用下面语句下载freebayes: git clone --recursiv...
阅读(53) 评论(0)

分类模型之职员离职分析

今天要带来的是机器学习中几种重要的分类模型。分别是:逻辑回归、支持向量机、决策树、随机森林这四种算法模型。这里就不主要介绍模型背后的理论知识了,直接上数据,在数据分析中再来谈这些算法模型。 今天要讨论的是Kaggle上的公司职员离职数据集。这个数据集很有意思,因为它与生活贴近且是人们关注的事情。好了,下面我们进入主题。 首先,引入必要的包和库,再使用pandas包导入数据。import nump...
阅读(179) 评论(0)

关于python2与python3共存问题

这个问题困扰了我很久,也是在一次偶然的机会解决了。现在就与大家分享一下,对于又想用python2又想用python3的小伙伴可以看看。 其实,这个方法也是挺简单的。我使用的是python2与anaconda3,将他们都加入环境变量。如果先加入的是python2环境变量,则系统中显示的python2,用pip安装包也是安装在python2中。 然后,在系统运行中输入cmd,再在命令提示符输入p...
阅读(126) 评论(0)

python中数据聚合与分组运算

在数据分析处理中,对数据进行分组并对各组应用一个函数(无论是聚合还是转换)计算分组统计或生成透视表,是数据分析工作中的重要环节。 python提供了一个灵活高效的groupby功能,它可以使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。在python中主要有两个模块(itertools和pandas)提供了groupby方法。而pandas中的groupby功能尤为强大,可以根据一个或多...
阅读(152) 评论(0)

python画图常规设置

python绘图的包大家应该不会陌生,但是,对图的常规设置不一定会知道(其实自己也是才知道的),比如:坐标轴的字体大小、颜色设置;标题的字体颜色大小设置;线的粗细、颜色;图片风格的设置等。了解这些常规设置必定会让图片更加美观。 下面就具体来说说matplotlib中有哪些常规设置。 我主要总结了这几个函数: plt.style.use()函数;可以对图片的整体风格进行设置。可以通过p...
阅读(304) 评论(0)

可视化决策树之Python实现

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。一些基础原理这里就不再一一介绍了,直接进入今天的主题,如何可视化决策树。 本篇使用klearn来实现决策树的过程,下面是详细讲解: 首先导入必要的包: import pandas as pd imp...
阅读(657) 评论(0)

sklearn0.20移除了grid_search模块

如果使用sklearn0.20版本的朋友,那么使用网格搜索(gridsearch)寻找最优参数模型的话,sklearn.grid_search.GridsearchCV类已经被移除了,只有通过sklearn.model_selection调用GridsearchCV。...
阅读(132) 评论(0)

最长公共子串和最长公共子序列之Python实现

动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。简单的理解为:是将一个棘手的问题,分成一个个小问题,先着手解决这些小问题,最后找到解决最优解的优化过程。动态规划一般可分为线性动规,区域动规,树形动规,背包动规四类。在这里,我们主要解决背包动态规划问题。用一个示例展开: 假如你要去野营。你有一个容量为6磅的背...
阅读(111) 评论(0)

自行编写线性回归对房价进行预测

如果特征值之间存在线性关系就可以使用线性回归建模对其预测结果。本次测试是对一个房屋售价的数据集进行探索,并找出与售价之间有相关性的特征值建立回归模型,来通过此特征值来预测房价。          下面,开始导入数据集: import pandas as pd df = pd.read_csv("house_data.csv") # 查看前五行数据 df.head() 这样看数据集是很难看出有...
阅读(964) 评论(3)

seaborn单变量、多变量及回归分析绘图

上节简单介绍seaborn的主题设置和调色板设定。这一部分介绍使用seaborn进行单变量和回归分析。 首先,确定单变量应该使用怎样的图来表示?最佳的表示法为直方图。 import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import stats, integrate import s...
阅读(438) 评论(0)

Tensorflow之会话操作

Tensorflow中,如何使用会话(session)来执行定义好的运算。 import tensorflow as tf # 创建一个会话。 sess = tf.Session() # 使用这个创建好的会话来得到关心的运算的结果 sess.run(...) # 关闭会话释放本次运行的资源 sess.close()使用这种模式时,在所有计算完成之后,需要明确调用Session.close函数来关...
阅读(506) 评论(0)

图像处理之使用人机交互截取图片

在图像处理的过程中,我们可能会遇到这样的一个场景,想要截取图像的某个区域,但是,又无法知道区域在图片的具体位置,无法通过正常的截图手段进行操作。所以,根据这一需求,我们应该想到在交互状态下去操作图像,也就是可以通过我们的鼠标进行选定某个区域,然后再进行相应的操作,当然,我们在这里是截图操作。设置一个可以选定区域且如果没有选好,还可以重新选择的需求。 在opencv中就有一些提供人机交互的参数(其...
阅读(397) 评论(0)
47条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:33236次
    • 积分:671
    • 等级:
    • 排名:千里之外
    • 原创:39篇
    • 转载:4篇
    • 译文:4篇
    • 评论:5条
    最新评论