基于VC.NET的GDI 编程之CImage方案

原创 2007年09月20日 13:15:00
 

  我们知道,Visual C++的CBitmap类和静态图片控件的功能是比较弱的,它只能显示出在资源中的图标、位图、光标以及图元文件的内容,而不像VB中的Image控件可以显示出绝大多数的外部图像文件(BMP、GIF、JPEG等)。因此,想要在对话框或其他窗口中显示外部图像文件则只能借助于第三方提供的控件或代码。现在,MFC和ATL共享的新类CImage为图像处理提供了许多相应的方法,这使得Visual C++在图像方面的缺憾一去不复返了。
  CImage类概述

  CImage是MFC和ATL共享的新类,它能从外部磁盘中调入一个JPEG、GIF、BMP和PNG格式的图像文件加以显示,而且这些文件格式可以相互转换。由于CImage在不同的Windows操作系统中其某些性能是不一样的,因此在使用时要特别注意。例如,CImage::PlgBlt和CImage::MaskBlt只能在 Windows NT 4.0 或更高版本中使用,但不能运行在Windows 95/98 应用程序中。CImage::AlphaBlend和CImage::TransparentBlt也只能在 Windows 2000/98或其更高版本中使用。即使在Windows 2000运行程序还必须将stdafx.h文件中的WINVER和_WIN32_WINNT的预定义修改成0x0500才能正常使用。

  CImage封装了DIB(设备无关位图)的功能,因而可以让我们能够处理每个位图像素。它具有下列最酷特性:

  1、AlphaBlend支持像素级的颜色混合,从而实现透明和半透明的效果。

  2、PlgBlt能使一个矩形区域的位图映射到一个平行四边形区域中,而且还可能使用位屏蔽操作。

  3、TransparentBlt在目标区域中产生透明图像,SetTransparentColor用来设置某种颜色是透明色。

  4、MaskBlt在目标区域中产生源位图与屏蔽位图合成的效果。



  使用CImage的一般方法

  使用CImage的一般方法是这样的过程:

  (1) 打开应用程序的stdafx.h文件添加CImage类的包含文件:

#include <atlimage.h>

  (2) 定义一个CImage类对象,然后调用CImage::Load方法装载一个外部图像文件。

  (3) 调用CImage::Draw方法绘制图像。Draw方法具有如下定义:

BOOL Draw( HDC hDestDC, int xDest, int yDest,
int nDestWidth, int nDestHeight, int xSrc, int ySrc,
int nSrcWidth, int nSrcHeight );
BOOL Draw( HDC hDestDC, const RECT& rectDest, const RECT& rectSrc );
BOOL Draw( HDC hDestDC, int xDest, int yDest );
BOOL Draw( HDC hDestDC, const POINT& pointDest );
BOOL Draw( HDC hDestDC, int xDest, int yDest,
int nDestWidth, int nDestHeight );
BOOL Draw( HDC hDestDC, const RECT& rectDest );

  其中,hDestDC用来指定绘制的目标设备环境句柄,(xDest, yDest)和pointDest用来指定图像显示的位置,这个位置和源图像的左上角点相对应。nDestWidth和nDestHeight分别指定图像要显示的高度和宽度,xSrc、ySrc、nSrcWidth和nSrcHeight用来指定要显示的源图像的某个部分所在的位置和大小。rectDest和rectSrc分别用来指定目标设备环境上和源图像所要显示的某个部分的位置和大小。

  需要说明的是,Draw方法综合了StretchBlt、TransparentBlt和AlphaBlend函数的功能。默认时,Draw的功能和StretchBlt相同。但当图像含有透明色或Alpha通道时,它的功能又和TransparentBlt、AlphaBlend相同。因此,在一般情况下,我们都应该尽量调用CImage::Draw方法来绘制图像。

  例如,下面的示例Ex_Image是实现这样的功能:当选择"文件"ò"打开"菜单命令后,弹出一个文件打开对话框。当选定一个图像文件后,就会在窗口客户区中显示该图像文件内容。这个示例的具体步骤如下:

  (1) 创建一个默认的单文档程序项目Ex_Image。

  (2) 打开stdafx.h文件中添加CImage类的包含文件atlimage.h。

  (3) 在CEx_ImageView类添加ID_FILE_OPEN的COMMAND事件映射程序,并添加下列代码:

void CEx_ImageView::OnFileOpen()
{
 CString strFilter;
 CSimpleArray<GUID> aguidFileTypes;
 HRESULT hResult;

 // 获取CImage支持的图像文件的过滤字符串
 hResult = m_Image.GetExporterFilterString(strFilter,aguidFileTypes,
_T( "All Image Files") );
 if (FAILED(hResult)) {
  MessageBox("GetExporterFilter调用失败!");
  return;
 }
 CFileDialog dlg(TRUE, NULL, NULL, OFN_FILEMUSTEXIST, strFilter);
 if(IDOK != dlg.DoModal())
  return;

 m_Image.Destroy();
 // 将外部图像文件装载到CImage对象中
 hResult = m_Image.Load(dlg.GetFileName());
 if (FAILED(hResult)) {
  MessageBox("调用图像文件失败!");
  return;
 }

 // 设置主窗口标题栏内容
 CString str;
 str.LoadString(AFX_IDS_APP_TITLE);
 AfxGetMainWnd()->SetWindowText(str + " - " +dlg.GetFileName());

 Invalidate(); // 强制调用OnDraw
}

  (4) 定位到CEx_ImageView::OnDraw函数处,添加下列代码:

void CEx_ImageView::OnDraw(CDC* pDC)
{
 CEx_ImageDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 if (!m_Image.IsNull()) {
  m_Image.Draw(pDC->m_hDC,0,0);
 }
}

  (5) 打开Ex_ImageView.h文件,添加一个公共的成员数据m_Image:

public:
CImage m_Image;

  (6) 编译并运行。单击"打开"工具按钮,在弹出的对话框中指定一个图像文件后,单击"打开"按钮,其结果如图7.21所示。




  将图片用其它格式保存

  CImage::Save方法能将一个图像文件按另一种格式来保存,它的原型如下:

HRESULT Save( LPCTSTR pszFileName, REFGUID guidFileType= GUID_NULL);

  其中,pszFileName用来指定一个文件名,guidFileType用来指定要保存的图像文件格式,当为GUID_NULL时,其文件格式由文件的扩展名来决定,这也是该函数的默认值。它还可以是GUID_BMPFile(BMP文件格式)、GUID_PNGFile(PNG文件格式)、GUID_JPEGFile(JPEG文件格式)和GUID_GIFFile(GIF文件格式)。

  例如,下面的过程是在Ex_Image示例基础上进行的,我们在CEx_ImageView类添加ID_FILE_SAVE_AS的COMMAND事件映射程序,并添加下列代码:

void CEx_ImageView::OnFileSaveAs()
{
 if (m_Image.IsNull()) {
  MessageBox("你还没有打开一个要保存的图像文件!");
  return;
 }

 CString strFilter;
 strFilter = "位图文件|*.bmp|JPEG 图像文件|*.jpg| /
GIF 图像文件|*.gif|PNG 图像文件|*.png||";
 CFileDialog dlg(FALSE,NULL,NULL,NULL,strFilter);
 if ( IDOK != dlg.DoModal())
  return;

 // 如果用户没有指定文件扩展名,则为其添加一个
 CString strFileName;
 CString strExtension;

 strFileName = dlg.m_ofn.lpstrFile;
 if (dlg.m_ofn.nFileExtension == 0)
 {
  switch (dlg.m_ofn.nFilterIndex)
  {
   case 1:
    strExtension = "bmp"; break;
   case 2:
    strExtension = "jpg"; break;
   case 3:
    strExtension = "gif"; break;
   case 4:
    strExtension = "png"; break;
   default:
    break;
  }
  strFileName = strFileName + '.' + strExtension;
 }

 // 图像保存
 HRESULT hResult = m_Image.Save(strFileName);
 if (FAILED(hResult))
  MessageBox("保存图像文件失败!");
}


  柔化和锐化处理

  在图像处理中,我们通常用一些数学手段,对图像进行除去噪声、强调或抽取轮廓特征等图像空间的变换。所谓"图像空间的变换"是借助于一个称之为模板的局部像素域来完成的,不同的模板具有不同的图像效果。

  1. 柔化

  图像的柔化是除去图像中点状噪声的一个有效方法。所谓柔化,是指使图像上任何一个像素与其相邻像素的颜色值的大小不会出现陡突的一种处理方法。设在一个3 x 3的模板中其系数为:



  中间有底纹的表示中心元素,即用那个元素作为处理后的元素。很明显,上述模板(称之为Box模板)是将图像上每个像素用它近旁(包括它本身)的9个像素的平均值取代。这样处理的结果在除噪的同时,也降低图像的对比度,使图像的轮廓模糊。为了避免这一缺陷,我们对各点引入加权系数,将原来的模板改为:



  新的模板可一方面除去点状噪声,同时能较好地保留原图像的对比度,因此该模板得到了广泛的应用。由于这个模板是通过二维高斯(Gauss)函数得到的,故称为高斯模板。

  2. 锐化

  锐化和柔化恰恰相反,它通过增强高频分量减少图像中的模糊,因此又称为高通滤波。锐化处理在增强图像边缘效果的同时增加了图像的噪声。常用的锐化模板是拉普拉斯模板:



  用此模板处理后的图像,轮廓线条将明显得到增强。轮廓线以外的部分将变得较暗,而轮廓线部分将变得比较明亮。

  使用程序对模板进行运算时,要考虑到溢出点的处理。所谓溢出点,指的是大于255或小于0的点。处理时,可令大于255的点取255,而小于0的点取其正值。

  3. 实现代码

  实现柔化和锐化时,我们先调用CImage::GetPixel来依次读取相应的像素,然后用柔化和锐化模板进行处理,最后调用CImage::SetPixel函数将处理后的像素写回到CImage对象中。具体的代码如下:

void FilterImage(CImage* image, int nType)
{
 if (image->IsNull())
  return;
 int smoothGauss[9] = {1,2,1,2,4,2,1,2,1}; // 高斯模板
 int sharpLaplacian[9] = {-1,-1,-1,-1,9,-1,-1,-1,-1}; // 拉普拉斯模板

 int opTemp[9];
 float aver; // 系数
 if ( nType > 1) nType = 0;
 switch( nType ){
  case 0: // 高斯模板
   aver = (float)(1.0/16.0);
   memcpy( opTemp, smoothGauss, 9*sizeof(int));
   break;
  case 1: // 拉普拉斯模板
   aver = 1.0;
   memcpy( opTemp, sharpLaplacian, 9*sizeof(int));
   break;
 }

 int i,j;

 int nWidth = image->GetWidth();
 int nHeight = image->GetHeight();

 for (i = 1; i < nWidth-1; i++){
  for (j = 1; j < nHeight-1; j++){

   int rr = 0, gg = 0, bb = 0;
   int index = 0;

   for (int col = -1; col <= 1; col++){
    for (int row = -1; row <= 1; row++){
     COLORREF clr = image->GetPixel( i+row, j+col);
     rr += GetRValue(clr) * opTemp[index];
     gg += GetGValue(clr) * opTemp[index];
     bb += GetBValue(clr) * opTemp[index];
     index++;
    }
   }
  
   rr = (int)(rr*aver);
   gg = (int)(gg*aver);
   bb = (int)(bb*aver);

   // 处理溢出点
  if ( rr > 255 ) rr = 255;
  else if ( rr < 0 ) rr = -rr;
  if ( gg > 255 ) gg = 255;
  else if ( gg < 0 ) gg = -gg;
  if ( bb > 255 ) bb = 255;
  else if ( bb < 0 ) bb = -bb;

  // 错位重写以避免前一个像素被新的像素覆盖
  image->SetPixel( i-1, j-1, RGB(rr,gg,bb));
  }
 }
}

图7.22是使用上述代码将某个图像处理后的结果。





  变成黑白图片

  由于许多图像文件使用颜色表来发挥显示设备的色彩显示能力,因而将一张彩色图片变成黑色图片时需要调用CImage::IsIndexed来判断是否使用颜色表,若是则修改颜色表,否则直接将像素进行颜色设置。例如下面的代码:

void CEx_ImageView::MakeBlackAndwhite(CImage* image)
{
 if (image->IsNull()) return;

 if (!image->IsIndexed()) {
  // 直接修改像素颜色
  COLORREF pixel;
  int maxY = image->GetHeight(), maxX = image->GetWidth();
  byte r,g,b,avg;
  for (int x=0; x<maxX; x++) {
   for (int y=0; y<maxY; y++) {
    pixel = image->GetPixel(x,y);
    r = GetRValue(pixel);
    g = GetGValue(pixel);
    b = GetBValue(pixel);
    avg = (int)((r + g + b)/3);
    image->SetPixelRGB(x,y,avg,avg,avg);
   }
  }
 } else {
  // 获取并修改颜色表
  int MaxColors = image->GetMaxColorTableEntries();
  RGBQUAD* ColorTable;
  ColorTable = new RGBQUAD[MaxColors];
  image->GetColorTable(0,MaxColors,ColorTable);
  for (int i=0; i<MaxColors; i++)
  {
   int avg = (ColorTable[i].rgbBlue + ColorTable[i].rgbGreen + ColorTable[i].rgbRed)/3;
   ColorTable[i].rgbBlue = avg;
   ColorTable[i].rgbGreen = avg;
   ColorTable[i].rgbRed = avg;
  }
  image->SetColorTable(0,MaxColors,ColorTable);
  delete(ColorTable);
 }
}

  至此,我们介绍了GDI+和CImage的一般使用方法和技巧。当然,它们本身还有许多更深入的方法,由于篇幅所限,这里不再一一讨论。
 

Trackback: http://tb.blog.csdn.net/TrackBack.aspx?PostId=1417475

 
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

C++ AMP implementation of SmallPt / SmallPtGPU : SmallPtAMP

前段时间突然对SmallPtGPU很感兴趣,于是自己也照葫芦画瓢搞了一个C++AMP的版本,整体跟SmallPtGPU基本相同,但是去掉了SmallPtGPU中显式计算直接光照的步骤,因而实现更加接近...

C++ AMP的tiled_index线程编号属性笔记

tiled_index类中有4个属性与线程编号有关——tiled_index.global:线程的全局编号。相当于DirectCompute中的SV_DispatchThreadID。tiled_in...

C++AMP: 遇见C++ AMP:在GPU上做并行计算

遇见C++ AMP:在GPU上做并行计算 Written by Allen Lee I see all the young believers, your target audience. I see...

C++ AMP异构并行编程解析

C++ AMP异构并行编程解析 原文发表于《程序员》杂志2012年第4期,略有改动。 文 / 陈冠诚 微软在今年2月份的GoingNative大会上正式对外发布了C++ AM...

C++ AMP同CUDA之间的性能比较

通过500阶矩阵的乘法,大致比较下CPU、AMP、CUDA之间的性能差距。

C++ AMP: 遇见C++ AMP:GPU的线程模型和内存模型

遇见C++ AMP:GPU的线程模型和内存模型 Written by Allen Lee I don't care where the enemies are / Can't be stopped /...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)