tomcat的自动重启脚本

管理Tomcat服务:启动、停止、重启脚本
本文介绍了一个用于管理Tomcat服务的Shell脚本,该脚本支持启动、停止和重启Tomcat服务。脚本通过判断输入参数来执行相应的操作,包括清理工作目录、获取并杀死当前运行的Tomcat进程、输出进程ID列表以及重新启动Tomcat。
#!/bin/sh
#kill tomcat pid

case "$1" in

start)

        cd /usr/local/tomcat

#!/bin/sh
#kill tomcat pid

case "$1" in

start)

        cd /usr/local/tomcat

        rm -rf work/*

        cd bin

        ./startup.sh ;tail -f ../logs/catalina.out
        ;;
stop)
        pidlist=`ps -ef|grep tomcat|grep -v "grep" |grep -v "tomcat_resart.sh" |awk '{print $2}'`


        echo "tomcat Id list :$pidlist"


        kill -9 $pidlist


        echo "KILL $pidlist:"


        echo "service stop success"
        ;;
restart)


        pidlist=`ps -ef|grep tomcat|grep -v "grep" |grep -v "tomcat_resart.sh" |awk '{print $2}'`


        echo "tomcat Id list :$pidlist"


        kill -9 $pidlist


        echo "KILL $pidlist:"


        echo "service stop success"


        echo "start tomcat"


        cd /usr/local/tomcat


        rm -rf work/*


        cd bin


        ./startup.sh ;tail -f ../logs/catalina.out


          ;;
 *)
        echo "Usage: $0 {start|stop|restart}" 


        exit 1


        esac


        exit 0
【基于DQN和PyTorch无人机】【多智能体深度Q学习(MA-DQL)】分布式用户连接最大化在基于无人机的通信网络中研究(Python代码实现)内容概要:本文围绕基于DQN和PyTorch的多智能体深度Q学习(MA-DQL)在无人机通信网络中的应用展开研究,重点解决分布式用户连接最大化问题。通过构建多智能体强化学习模型,利用PyTorch框架实现算法训练与仿真,优化无人机作为空中基站时的用户接入策略,提升通信网络的覆盖效率与资源利用率。文中详细介绍了MA-DQL的网络架构设计、状态-动作空间定义、奖励机制构建及分布式协作机制,并结合Python代码实现验证了方法的有效性与优越性。; 适合人群:具备一定深度学习和强化学习基础,熟悉PyTorch框架,从事无线通信、无人机网络或智能优化方向研究的研究生及科研人员。; 使用场景及目标:①应用于无人机辅助的无线通信网络中,实现用户连接的智能调度与资源优化;②为多智能体强化学习在分布式决策问题中的落地提供实践参考;③支持科研复现与算法改进,推动智能通信网络的发展。; 阅读建议:建议读者结合提供的Python代码进行实践操作,深入理解MA-DQL在实际通信场景中的建模过程,重点关注多智能体间的协同机制与奖励函数设计,同时可扩展至更复杂的动态环境与大规模网络场景中进行验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值