CodeFroce 369div2 B - Chris and Magic Square

原创 2016年08月30日 12:12:10
B. Chris and Magic Square
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

ZS the Coder and Chris the Baboon arrived at the entrance of Udayland. There is a n × n magic grid on the entrance which is filled with integers. Chris noticed that exactly one of the cells in the grid is empty, and to enter Udayland, they need to fill a positive integer into the empty cell.

Chris tried filling in random numbers but it didn't work. ZS the Coder realizes that they need to fill in a positive integer such that the numbers in the grid form a magic square. This means that he has to fill in a positive integer so that the sum of the numbers in each row of the grid (), each column of the grid (), and the two long diagonals of the grid (the main diagonal —  and the secondary diagonal — ) are equal.

Chris doesn't know what number to fill in. Can you help Chris find the correct positive integer to fill in or determine that it is impossible?

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 500) — the number of rows and columns of the magic grid.

n lines follow, each of them contains n integers. The j-th number in the i-th of them denotes ai, j (1 ≤ ai, j ≤ 109 or ai, j = 0), the number in the i-th row and j-th column of the magic grid. If the corresponding cell is empty, ai, j will be equal to 0. Otherwise, ai, j is positive.

It is guaranteed that there is exactly one pair of integers i, j (1 ≤ i, j ≤ n) such that ai, j = 0.

Output

Output a single integer, the positive integer x (1 ≤ x ≤ 1018) that should be filled in the empty cell so that the whole grid becomes a magic square. If such positive integer x does not exist, output  - 1 instead.

If there are multiple solutions, you may print any of them.

Examples
input
3
4 0 2
3 5 7
8 1 6
output
9
input
4
1 1 1 1
1 1 0 1
1 1 1 1
1 1 1 1
output
1
input
4
1 1 1 1
1 1 0 1
1 1 2 1
1 1 1 1
output
-1
Note

In the first sample case, we can fill in 9 into the empty cell to make the resulting grid a magic square. Indeed,

The sum of numbers in each row is:

4 + 9 + 2 = 3 + 5 + 7 = 8 + 1 + 6 = 15.

The sum of numbers in each column is:

4 + 3 + 8 = 9 + 5 + 1 = 2 + 7 + 6 = 15.

The sum of numbers in the two diagonals is:

4 + 5 + 6 = 2 + 5 + 8 = 15.

In the third sample case, it is impossible to fill a number in the empty square such that the resulting grid is a magic square.


题目简洁明了,但是我还是理解错了两个东西。一个是,横着竖着斜着加起来的和都是一样的!否则数据88会wa掉(不要问我是怎么知道的)然后就是如果0就是答案的话,是不可行的,题目要求输出-1或者1到10^18的数字,不判定是否为0数据7会wa掉(都是泪)

这题目的时间限制是2s,那么就算是最大的500*500的矩阵,我横着竖着扫一遍也才250000的运算量,完全无压力,所以直接暴力就行了。

代码如下:

#include<stdio.h>
long long G[505][505];
int main()
{
	int n,i,j,row,column,sw=1;
	int mark[505]={0};
	long long sum,tsum; 
	scanf("%d",&n);
	for(i=1;i<=n;i++)
		for(j=1;j<=n;j++)
		{
			scanf("%I64d",&G[i][j]);
			if(G[i][j] == 0)
			{
				row = i;
				column = j;
			}
		}
	if(n == 1)
		printf("1\n");
	else
	{
		sum = 0;
		tsum = 0;
		if(column == 1)
		{
			for(i=1;i<=n;i++)
				sum+=G[i][2];
			mark[2]=1;
		}
		else
		{
			for(i=1;i<=n;i++)
				sum+=G[i][1];
			mark[1]=1;
		}
		for(i=1;i<=n;i++)
		{
			tsum+=G[i][column];
			mark[column]=1;
		}
		G[row][column] = sum - tsum;
		if(G[row][column] <= 0)
		{
			printf("-1\n");
			sw = 0;
		}
		if(sw)
			for(i=1;i<=n;i++)//竖着 
			{
				if(!mark[i])
				{
					tsum=0;
					for(j=1;j<=n;j++)
						tsum+=G[j][i];
					if(tsum!=sum)
					{
						printf("-1\n");
						sw=0;
						break;
					}
				}
			}
		if(sw)//横着 
		{
			for(i=1;i<=n;i++)
			{
				tsum=0;
				for(j=1;j<=n;j++)
					tsum+=G[i][j];
				if(tsum!=sum)
				{
					printf("-1\n");
					sw=0;
					break;
				}
			}
		}
		if(sw)//斜着 
		{
			tsum = 0;
			for(i=1;i<=n;i++)
				tsum += G[i][i];
			if(tsum!=sum)
				sw = 0;
			for(i=1;i<=n;i++)
				tsum -= G[i][n - i + 1];
			if(tsum==0&&sw)
				printf("%I64d\n",G[row][column]);
			else
				printf("-1\n");
		}
	}
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ Sudoku 数独填数(深搜)

题目:http://poj.org/problem?id=2676 思路:见代码: #include #include #include #include using namespace s...
  • xiaozhuaixifu
  • xiaozhuaixifu
  • 2013年10月03日 14:01
  • 2003

Lua中and、or的一些特殊用法

Lua中的逻辑运算符:与(and)、或(or)和非(not),与其他语言的逻辑运算符功能一致,这里不做赘述。只说一点,所有的逻辑运算符将false和nil视为假,其他任何东西视为真,0也视为真。 这...
  • gzy252050968
  • gzy252050968
  • 2016年01月13日 20:40
  • 4188

什么是LMS算法(Least mean square)

LMS算法可认为是机器学习里面最基本也比较有用的算法,神经网络中对参数的学习使用的就是LMS的思想,在通信信号处理领域LMS也非常常见,比如自适应滤波器。其它就是利用梯度下降的算法来实现的,具体推导如...
  • caimouse
  • caimouse
  • 2017年03月04日 13:16
  • 1738

Codeforces Round #369 (Div. 2) B. Chris and Magic Square

B. Chris and Magic Square time limit per test 2 seconds memory limit per test 256 megaby...
  • mirror58229
  • mirror58229
  • 2016年08月30日 23:52
  • 244

Codeforces Round #369 (Div. 2) B. Chris and Magic Square【数学,模拟】

题意:输入一个n*n的矩阵,有一个位置为0,问你能否在0处填上一个正整数,使得该矩阵的每一行,每一列,主对角,副对角线上的和都相等,即构成一个幻方。 由于要构成一个幻方,所以只用根据行的和求出要填的数...
  • hurmishine
  • hurmishine
  • 2016年09月03日 20:52
  • 733

【Codeforces Round #369 (Div. 2)】Codeforces 711B Chris and Magic Square

模拟
  • sdfzyhx
  • sdfzyhx
  • 2016年08月30日 13:54
  • 167

codeforces#369Div2(711B)Chris and Magic Square

codeforces#369Div2BChris and Magic Square
  • qq_17259291
  • qq_17259291
  • 2016年08月30日 21:03
  • 254

codeforces 711B. Chris and Magic Square【模拟】

B. Chris and Magic Square time limit per test 2 seconds memory limit per test 256 megaby...
  • Bcwan_
  • Bcwan_
  • 2016年08月29日 23:32
  • 640

Chris and Magic Square CodeForces - 711B

ZS the Coder and Chris the Baboon arrived at the entrance of Udayland. There is a n × n magic grid o...
  • qq_35806592
  • qq_35806592
  • 2017年03月22日 20:50
  • 154

Codeforces 711B- Chris and Magic Square

B. Chris and Magic Square time limit per test 2 seconds memory limit per test 256 megaby...
  • LDUtyk
  • LDUtyk
  • 2016年08月31日 18:44
  • 454
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:CodeFroce 369div2 B - Chris and Magic Square
举报原因:
原因补充:

(最多只允许输入30个字)