第九周-阅读程序1

原创 2016年06月02日 08:29:58
/* 
*Copyright (c) 2016,烟台大学计算机学院 
*All rights reserved. 
*文件名称 : 
*作    者 : 刘默涵
*完成日期 : 2016年6月2号 
*版 本 号 : v1.0 
*问题描述 :  阅读程序,写出的程序的运行结果并理解
*输入描述 :   无    
*程序输出 :    
*/    
#include <iostream>
using namespace std;
class A
{
public:
    A(){cout<<"A";}
    ~A(){cout<<"~A";}
};

class B
{
    A *p;
public:
    B()
    {
        cout<<"B";
        p=new A();
    }
    ~B()
    {
        cout<<"~B";
        delete p;
    }
};
int main()
{
    B obj;
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

Coursera—machine learning(Andrew Ng)第九周编程作业

estimateGaussian.m function [mu sigma2] = estimateGaussian(X) %ESTIMATEGAUSSIAN This function esti...
  • ccblogger
  • ccblogger
  • 2018年01月17日 16:46
  • 94

第九周阅读程序-(1)

问题及代码: /* Copyright(c)2016,烟台大学计算机与控制工程学院 All rights reserced 文件名称:test.cpp 作 者:蔡汝佳 完成...
  • Dream_xd
  • Dream_xd
  • 2016年04月28日 09:01
  • 146

Coursera Machine Learning 第九周 quizProgramming Exercise 8: Anomaly Detection and Recommender Systems

estimateGaussian.m function [mu sigma2] = estimateGaussian(X) %ESTIMATEGAUSSIAN This function estima...
  • mupengfei6688
  • mupengfei6688
  • 2016年11月13日 18:14
  • 2033

coursera Machine Learning 第九周 测验quiz2答案解析 Recommender Systems

1.选择:BD 解析:A的k没看懂是什么,前面求和积的明明是j,i,故错误。C为什么要减去r,所以错误。 2.选择:AD 解析:协同过滤最适合做相似度、推荐等情形,但是不能预测销售数...
  • sinat_39805237
  • sinat_39805237
  • 2018年01月07日 20:23
  • 187

Machine Learning第九周笔记:异常检测与推荐系统

Andrew Ng在Machine Learning的第九周介绍了异常检测(anomaly detection)和推荐系统(recommender system),将笔记整理在下面。...
  • MajorDong100
  • MajorDong100
  • 2016年04月11日 10:16
  • 4429

Coursera机器学习-第九周-Anomaly Detection

Density EstimationProblem Motivation 所谓异常检测就是发现与大部分对象不同的对象,其实就是发现离群点,异常检测有时也称偏差检测,异常对象是相对罕见的。 应用:欺...
  • dingchenxixi
  • dingchenxixi
  • 2016年06月18日 13:57
  • 3325

第九周实践——阅读程序(1)

/*  *Copyright (c) 2016,烟台大学计算机学院  *All rights reserved.  *文件名称 :  *作    者 : 徐聪 *完成日期 : 2016年4月...
  • ccxucong
  • ccxucong
  • 2016年04月28日 08:33
  • 144

coursera Machine Learning 第九周 测验quiz1答案解析 Anomaly Detection

1.选择:AB 解析:异常值检测分析数据将明显区别于正常值的数据挑选出来,AB符合,CD是分类 2.选择:A 解析:如果有太多的异常说明大部分正常的也小于sigma,所以要减小sigma使得正常值...
  • sinat_39805237
  • sinat_39805237
  • 2018年01月01日 12:06
  • 67

Coursera-吴恩达-机器学习-(第9周笔记)异常检测和推荐系统

此系列为 Coursera 网站Andrew Ng机器学习课程个人学习笔记(仅供参考) 课程网址:https://www.coursera.org/learn/machine-learning ...
  • malele4th
  • malele4th
  • 2018年01月16日 18:24
  • 117

coursera-斯坦福-机器学习-吴恩达-第9周笔记(上)-异常检测

coursera-斯坦福-机器学习-吴恩达-第9周笔记(上)-异常检测coursera-斯坦福-机器学习-吴恩达-第9周笔记上-异常检测 1异常检测 1引入 2高斯正态分布 3异常检测算法 2建立一个...
  • u012052268
  • u012052268
  • 2017年12月20日 22:43
  • 529
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第九周-阅读程序1
举报原因:
原因补充:

(最多只允许输入30个字)