随机森林和GBDT的区别

原创 2017年06月30日 00:20:54

一,随机森林

随机森林是一个用随机方式建立的,包含多个决策树的集成分类器。其输出的类别由各个树投票而定(如果是回归树则取平均)。假设样本总数为n,每个样本的特征数为a,则随机森林的生成过程如下:

  1. 从原始样本中采用有放回抽样的方法选取n个样本;
  2. 对n个样本选取a个特征中的随机k个,用建立决策树的方法获得最佳分割点;
  3. 重复m次,获得m个决策树;
  4. 对输入样例进行预测时,每个子树都产生一个结果,采用多数投票机制输出。

随机森林的随机性主要体现在两个方面:

  1. 数据集的随机选取:从原始的数据集中采取有放回的抽样(bagging),构造子数据集,子数据集的数据量是和原始数据集相同的。不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复。
  2. 待选特征的随机选取:与数据集的随机选取类似,随机森林中的子树的每一个分裂过程并未用到所有的待选特征,而是从所有的待选特征中随机选取一定的特征,之后再在随机选取的特征中选取最优的特征。

以上两个随机性能够使得随机森林中的决策树都能够彼此不同,提升系统的多样性,从而提升分类性能。

随机森林的优点

  1. 实现简单,训练速度快,泛化能力强,可以并行实现,因为训练时树与树之间是相互独立的;
  2. 相比单一决策树,能学习到特征之间的相互影响,且不容易过拟合;
  3. 能处理高维数据(即特征很多),并且不用做特征选择,因为特征子集是随机选取的;
  4. 对于不平衡的数据集,可以平衡误差;
  5. 相比SVM,不是很怕特征缺失,因为待选特征也是随机选取;
  6. 训练完成后可以给出哪些特征比较重要。

随机森林的缺点

  1. 在噪声过大的分类和回归问题还是容易过拟合;
  2. 相比于单一决策树,它的随机性让我们难以对模型进行解释。

二,GBDT (Gradient Boost Decision Tree 梯度提升决策树)

GBDT是以决策树为基学习器的迭代算法,注意GBDT里的决策树都是回归树而不是分类树。Boost是”提升”的意思,一般Boosting算法都是一个迭代的过程,每一次新的训练都是为了改进上一次的结果。
GBDT的核心就在于:每一棵树学的是之前所有树结论和的残差,这个残差就是一个加预测值后能得真实值的累加量。比如A的真实年龄是18岁,但第一棵树的预测年龄是12岁,差了6岁,即残差为6岁。那么在第二棵树里我们把A的年龄设为6岁去学习,如果第二棵树真的能把A分到6岁的叶子节点,那累加两棵树的结论就是A的真实年龄;如果第二棵树的结论是5岁,则A仍然存在1岁的残差,第三棵树里A的年龄就变成1岁,继续学习。
GBDT优点是适用面广,离散或连续的数据都可以处理,几乎可用于所有回归问题(线性/非线性),亦可用于二分类问题(设定阈值,大于阈值为正例,反之为负例)。缺点是由于弱分类器的串行依赖,导致难以并行训练数据。

三,随机森林和GBDT的区别:

  1. 随机森林采用的bagging思想,而GBDT采用的boosting思想。这两种方法都是Bootstrap思想的应用,Bootstrap是一种有放回的抽样方法思想。虽然都是有放回的抽样,但二者的区别在于:Bagging采用有放回的均匀取样,而Boosting根据错误率来取样(Boosting初始化时对每一个训练样例赋相等的权重1/n,然后用该算法对训练集训练t轮,每次训练后,对训练失败的样例赋以较大的权重),因此Boosting的分类精度要优于Bagging。Bagging的训练集的选择是随机的,各训练集之间相互独立,弱分类器可并行,而Boosting的训练集的选择与前一轮的学习结果有关,是串行的。
  2. 组成随机森林的树可以是分类树,也可以是回归树;而GBDT只能由回归树组成。
  3. 组成随机森林的树可以并行生成;而GBDT只能是串行生成。
  4. 对于最终的输出结果而言,随机森林采用多数投票等;而GBDT则是将所有结果累加起来,或者加权累加起来。
  5. 随机森林对异常值不敏感;GBDT对异常值非常敏感。
  6. 随机森林对训练集一视同仁;GBDT是基于权值的弱分类器的集成。
  7. 随机森林是通过减少模型方差提高性能;GBDT是通过减少模型偏差提高性能。
版权声明:本文为博主原创文章,未经博主允许不得转载。

GBDT和随机森林的区别

GBDT和随机森林的相同点: 1、都是由多棵树组成 2、最终的结果都是由多棵树一起决定 GBDT和随机森林的不同点: 1、组成随机森林的树可以是分类树,也可以是回归树;而GBDT只由回归树组成 ...

Java对象锁和类锁全面解析(多线程synchronized关键字)

最近工作有用到一些多线程的东西,之前吧,有用到synchronized同步块,不过是别人怎么用就跟着用,并没有搞清楚锁的概念。最近也是遇到一些问题,不搞清楚锁的概念,很容易碰壁,甚至有些时候自己连用没...

GBDT和随机森林的区别

1背景 以前把这两个搞混了2随机森林 说道随机森林就要提bagging集成方法。bagging才用有放回的抽样。下图时bagging的示意图。 随机森林是bagging的一种扩展,在k个数据...

机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

机器学习中的算法-决策树模型组合之随机森林与GBDT

基于决策树的分类回归(随机森林,xgboost, gbdt)

xgboost,adaboost,randomforest, 决策树

随机森林,GBDT,Adaboost原理及python实现

随机森林 python实现GBDT python实现Adaboost python实现 装袋(bagging)又称自助聚集(boot strap aggregating), 是一种根据均匀分布概率从...

随机森林和GBDT的几个核心问题

GBDT和随机森林的相同点: 1、都是由多棵树组成 2、最终的结果都是由多棵树一起决定 GBDT和随机森林的不同点: 1、组成随机森林的树可以是分类树,也可以是回归树;而GBDT只由...

转:决策树模型组合之随机森林与GBDT

前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等。但是同时, 单决策树又有一些不好的地方,比如说容易ove...

决策树模型组合之随机森林与GBDT

本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail....

机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

前言:     决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等。但是同时,单决策树又有一些不好的地方,比如说容易o...
  • macyang
  • macyang
  • 2014年08月21日 22:48
  • 1646
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:随机森林和GBDT的区别
举报原因:
原因补充:

(最多只允许输入30个字)