DP专题5 POJ 2353 Ministry

传送门:http://poj.org/problem?id=2353

翻译:

     Mr. F. 想让部长批阅签署一份文件。但只有当部长的下属部门核准后,部长才签署一份文件。部门是一座M层的建筑物,从地面开始数起为1到M层。1<=M<=100.每一层有N个房间(1<=N<=500),也是从1到N编号。每一个房间里有且只有一个官员。一份文件要被部门签署,必须有至少一位(M层建筑物里的)官员签署;一个官员必须至少满足以下一项条件才能签署一个文件:

    条件a:该官员在第一层工作。
    条件b:该文件已经被楼下同一间房的官员签署。
    条件c:该文件已经被隔壁的官员签署(所谓隔壁,是指同一层,且房间号相差为1。)

    每一个官员签署一份文件,收取一点费用,这个费用为不超过10^9的正整数。
    请找出签署一份文件要付出的最少费用。

 

分析:

    这题与DP专题1中的题目有相似之处,只是这里改成了一个矩阵,我们可以设立状态dp[i][j]表示第到达第i行第j列的最低消耗,因为到达(i,j)有三种路径:从上到下,从左到右,从右到左。因此可以得到状态转移方程:dp[i][j]=Min{dp[i][j],dp[i][j+1]+a[i][j],dp[i][j-1]+input[i][j]}

    但是这题的关键是要记录路径,而且要求在求出dp的最小耗费后,顺序输出,为了达到降维的目的,我们可以设立一个结构 point 记录每一点(i,j)的来历px和py,令第一行来自px = 0 ,这样px = 0 就可以作为结束的标志。顺序输出有两种方法,其一是递归,为了更加快速的解决问题,不建议采取递归,在这里我们在上一步找寻起点的过程中,从终点开始记录py的值,用trace数组记录。最户再逆序输出trace数组即可,这里的方法跟大数问题的处理有异曲同工之处。

    代码如下:

   

/*Memory: 1064 KB   Time: 46 MS  
Language: C   Result: Accepted  
 
This source is shared by hust_lcl
*/
#include <stdio.h>
#include <stdlib.h>
int input[110][510];
int dp[110][510];
struct point{
    int x , y ;
} p[110][550];
int trace[100000];
int main()
{
    int m , n , i , j , flag , k;
    //int a , b , c;
    scanf("%d%d",&m,&n);
    for(i = 1 ; i <= m ; i ++)
      for(j = 1 ; j <= n ; j ++)
        scanf("%d",&input[i][j]);
    for(i = 1 ; i <= n ; i ++)
    {
        dp[1][i] = input[1][i];
        p[1][i].x = 0;
        p[1][i].y = i;
    }
    for(i = 2 ; i <= m ; i ++)
    {
        for(j = 1 ; j <= n ; j ++)//从上到下一次
        {
            dp[i][j] = dp[i-1][j] + input[i][j];
            p[i][j].x = i - 1 ;
            p[i][j].y = j;
        }
        for(j = 2 ; j <= n ; j ++)//从左到右一次
        {
            if(dp[i][j] > dp[i][j-1] + input[i][j])
            {
                dp[i][j] = dp[i][j-1] + input[i][j];
                p[i][j].x = i ;
                p[i][j].y = j - 1 ;
            }
        }
        for(j = n - 1 ; j >= 1 ; j--)//从右到左一次
        {
            if(dp[i][j] > dp[i][j+1] + input[i][j])
            {
                dp[i][j] = dp[i][j+1] + input[i][j];
                p[i][j].x = i;
                p[i][j].y = j + 1 ;
            }
        }
    }
    flag = dp[m][1];
    j = 1;
    for(i = 2 ; i <= n ; i ++)
      if(flag > dp[m][i])
      {
          flag = dp[m][i];
          j = i ;
      }
    //printf("%d\n",flag);
    i = 1;
    trace[i++] = j;
    while(p[m][j].x!=0)
    {
        trace[i++] = p[m][j].y;
        k = m;
        m = p[m][j].x;
        j = p[k][j].y;
    }
    //j = 999;
    //while(!trace[j])
    //j--;
    for(i -= 1; i >= 1 ; i --)
      printf("%d\n",trace[i]);
    return 0;
}


 

   

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值