约瑟夫问题o(n)算法

转载 2012年08月15日 16:36:28

声明:本文仅为个人查阅方便所转,版权为原文作者

本算法仅适用于找出最后的胜利者,而不是得到出列序列。

此方法从考虑n-1个人中最终胜利者(最后一个没有出列的人是谁),递推到n个人时最终胜利者是谁。但是并不能得到出列的序列。

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来
比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是
没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不
是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。

为了讨论方便,先把问题稍微改变一下,并不影响原意:

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始
报数。求胜利者的编号。

我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环
(以编号为k=m%n的人开始):
  k  k 1  k 2  ... n-2, n-1, 0, 1, 2, ... k-2
并且从k开始报0。

现在我们把他们的编号做一下转换:
k     --> 0
k 1   --> 1
k 2   --> 2
...
...
k-2   --> n-2
k-1   --> n-1

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是
最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回
去的公式很简单,相信大家都可以推出来:x'=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解
呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写
递推公式:

令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生
活中编号总是从1开始,我们输出f[n] + 1

由于是逐级递推,不需要保存每个f[i],程序也是异常简单:

#i nclude <stdio.h>

main()
{
  int n, m, i, s=0;
  printf ("N M = "); scanf("%d%d", &n, &m);
  for (i=2; i<=n; i ) s=(s + m)%i;
  printf ("The winner is %d/n", s+1);
}

这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万,
一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往
往会成倍地提高算法执行效率。

相关文章推荐

约瑟夫环的O(n)解决算法

问题 :已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围...

约瑟夫环 O(n)纯数学算法 真牛X

这篇文章也是看了别人发的 我分析了一下,想了半天,才弄出点眉目来,其实也没有想象的那么难理解,根据我的理解:应该算是个dp问题,原文中部分内容如下:  变换后就完完全全成为了(n-1)个人报数的子问题...

约瑟夫问题-O(n)算法实现

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们...
  • yueqiq
  • yueqiq
  • 2012年05月27日 13:54
  • 243

约瑟夫问题,从o(n*m)到o(n)乃至o(m)的算法复杂度进阶

约瑟夫问题,从o(n*m)到o(n)乃至o(m)的算法复杂度进阶

C++[算法]用数组模拟约瑟夫问题,即 N个人围成一圈,顺时针每数到给定K值的人出列,直到剩下最后一个人,求出圈人的序号顺序

#include using std::cin; using std::cout; using std::endl; int main() { unsigned int uiMenCou...

约瑟夫环O(N)和O(M*N)算法详解

约瑟夫环 O(n),O(n*m)算法。递推,动态规划。数组,循环链表。

约瑟夫环O(N)解法

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们...
  • swm8023
  • swm8023
  • 2012年03月16日 19:32
  • 1189

关于递推算法求解约瑟夫环问题P(n,m,k,s)

因为第一个出圈者是k+m-1,则下一个起始报数者k+m,原圈可增加一套新编号a,用1表示k+m,2表示k+m+1,依此类推,n则表示k+m-1,于是原圈又可对应至新环:1,2,......,n-1,n...
  • jkx1132
  • jkx1132
  • 2017年04月16日 16:01
  • 542

约瑟夫问题的N种解法

有n个囚犯站成一个圆圈,准备处决。首先从一个人开始报数,报到k的人被处死,剩下n-1个人继续这个过程,直到最终只剩下一个人留下. 问题是,给定了n和k,一开始要站在什么地方才能避免被处决?   1. ...

约瑟夫环问题算法

  • 2013年03月23日 23:05
  • 24KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:约瑟夫问题o(n)算法
举报原因:
原因补充:

(最多只允许输入30个字)