约瑟夫问题o(n)算法

转载 2012年08月15日 16:36:28

声明:本文仅为个人查阅方便所转,版权为原文作者

本算法仅适用于找出最后的胜利者,而不是得到出列序列。

此方法从考虑n-1个人中最终胜利者(最后一个没有出列的人是谁),递推到n个人时最终胜利者是谁。但是并不能得到出列的序列。

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来
比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是
没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不
是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。

为了讨论方便,先把问题稍微改变一下,并不影响原意:

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始
报数。求胜利者的编号。

我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环
(以编号为k=m%n的人开始):
  k  k 1  k 2  ... n-2, n-1, 0, 1, 2, ... k-2
并且从k开始报0。

现在我们把他们的编号做一下转换:
k     --> 0
k 1   --> 1
k 2   --> 2
...
...
k-2   --> n-2
k-1   --> n-1

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是
最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回
去的公式很简单,相信大家都可以推出来:x'=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解
呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写
递推公式:

令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生
活中编号总是从1开始,我们输出f[n] + 1

由于是逐级递推,不需要保存每个f[i],程序也是异常简单:

#i nclude <stdio.h>

main()
{
  int n, m, i, s=0;
  printf ("N M = "); scanf("%d%d", &n, &m);
  for (i=2; i<=n; i ) s=(s + m)%i;
  printf ("The winner is %d/n", s+1);
}

这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万,
一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往
往会成倍地提高算法执行效率。

约瑟夫问题,从o(n*m)到o(n)乃至o(m)的算法复杂度进阶

约瑟夫问题,从o(n*m)到o(n)乃至o(m)的算法复杂度进阶
  • ZHOUBEISI
  • ZHOUBEISI
  • 2016年08月25日 15:00
  • 753

算法题-约瑟夫(Joseph)问题求解

题:编写一个程序,求解约瑟夫(Joseph)问题。有n个小孩围城一圈,将他们从1开始依次编号,从编号为1的小孩开始报数,数到第m个小孩出列,然后从出列的下一个小孩重新开始报数,数到第m个小孩有出列,如...
  • liuxiao2030
  • liuxiao2030
  • 2017年01月05日 10:32
  • 882

约瑟夫问题——算法优化

在华为的OJ自学平台上有个约瑟夫问题,不过它不是原来意义上的约瑟夫问题,而是其变体,做了这个题之后,有一点关于算法优化的小想法,因此想写下来。 问题的描述如下:  功能: 约瑟夫问题众所周知,...
  • leijf1239848066
  • leijf1239848066
  • 2014年03月30日 14:17
  • 1764

约瑟夫问题各种求解方式

第一种就是很简单的公式运用,网上的代码,不能够证明和理解,所以当做模板用吧 #include int main() { int n,i=0,m,p; scanf("%d%d"...
  • Summer__show_
  • Summer__show_
  • 2016年03月06日 20:49
  • 516

【算法设计】约瑟夫环

本科系列课程参见:《软件学院那些课》 问题描述 约瑟夫(Joeph)问题的一种描述是:编号为1,2,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。一开始任选一个正整数作为报数上限...
  • xiaowei_cqu
  • xiaowei_cqu
  • 2013年02月21日 14:20
  • 8428

约瑟夫环问题的一种描述

#include"stdio.h" #include"malloc.h" //1.元素类型,结点类型和指针类型 typedef struct LNode         //定义结构体, { ...
  • ICEUnc1e
  • ICEUnc1e
  • 2014年09月11日 15:23
  • 1035

数据结构—约瑟夫问题

约瑟夫问题: 约瑟夫问题是个有名的问题:N个人围成一圈,从第一个开始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉。例如N=6,M=5,被杀掉的顺序是:5,4,6,2,3,1。 分析: ...
  • LY_624
  • LY_624
  • 2016年04月23日 14:44
  • 1218

C语言经典算法100例-069-简单约瑟夫环问题

这里我们实现一个简单的约瑟夫环问题,描述如下: 有N个人站成一圈,从
  • mrbourne
  • mrbourne
  • 2014年05月07日 09:24
  • 1452

算法: 约瑟夫问题(Joseph Problem)的分析

约瑟夫问题(Joseph Problem)的数学解决思路。
  • wlqingwei
  • wlqingwei
  • 2015年03月03日 14:17
  • 2362

约瑟夫环问题

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2211 题意:N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人重新从...
  • ACdreamers
  • ACdreamers
  • 2013年12月30日 19:33
  • 2543
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:约瑟夫问题o(n)算法
举报原因:
原因补充:

(最多只允许输入30个字)