FFT结果的物理意义

转载 2017年01月03日 16:28:10
正文 字体大小:

FFT结果的物理意义

转载
最近在看FFT,这里贴出一篇写的很清晰,很深刻的一篇博文
http://blog.sina.com.cn/s/blog_640029b301010xkv.html
   

  FFT是离散傅立叶变换的快速算法,可以将一个信号变换
到频域。有些信号在时域上是很难看出什么特征的,但是如
果变换到频域之后,就很容易看出特征了。这就是很多信号
分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱
提取出来,这在频谱分析方面也是经常用的。


   虽然很多人都知道FFT是什么,可以用来做什么,怎么去
做,但是却不知道FFT之后的结果是什意思、如何决定要使用
多少点来做FFT。


   现在圈圈就根据实际经验来说说FFT结果的具体物理意义。
一个模拟信号,经过ADC采样之后,就变成了数字信号。采样
定理告诉我们,采样频率要大于信号频率的两倍,这些我就
不在此罗嗦了。


   采样得到的数字信号,就可以做FFT变换了。N个采样点,
经过FFT之后,就可以得到N个点的FFT结果
。为了方便进行FFT
运算,通常N取2的整数次方。


   假设采样频率为Fs,信号频率F,采样点数为N。那么FFT
之后结果就是一个为N点的复数。
每一个点就对应着一个频率
点。
这个点的模值,就是该频率值下的幅度特性。具体跟原始
信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT
的结果的每个点(除了第一个点直流分量之外)的模值就是A
的N/2倍。而第一个点就是直流分量,它的模值就是直流分量
的N倍。
而每个点的相位呢,就是在该频率下的信号的相位。
第一个点表示直流分量(即0Hz),而最后一个点N的再下一个
点(实际上这个点是不存在的,这里是假设的第N+1个点,也
可以看做是将第一个点分做两半分,另一半移到最后)则表示
采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率
依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。

由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果
采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。
1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒
时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时
间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率
分辨力,则必须增加采样点数
也即采样时间。频率分辨率和
采样时间是倒数关系。

  假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是
An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,
就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:
An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
对于n=1点的信号,是直流分量,幅度即为A1/N。

   由于FFT结果的对称性,通常我们只使用前半部分的结果,
即小于采样频率一半的结果。


   好了,说了半天,看着公式也晕,下面圈圈以一个实际的
信号来做说明。


   假设我们有一个信号,它含有2V的直流分量,频率为50Hz、
相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、
相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:


S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)


   式中cos参数为弧度,所以-30度和90度要分别换算成弧度。
我们以256Hz的采样率对这个信号进行采样,总共采样256点。
按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个
点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号
有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、
第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?
我们来看看FFT的结果的模值如图所示。



                     图1 FFT结果
   从图中我们可以看到,在第1点、第51点、和第76点附近有
比较大的值。我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i
2点: -2.6195E-14 - 1.4162E-13i 
3点: -2.8586E-14 - 1.1898E-13i


50点:-6.2076E-13 - 2.1713E-12i
51点:332.55 - 192i
52点:-1.6707E-12 - 1.5241E-12i


75点:-2.2199E-13 -1.0076E-12i
76点:3.4315E-12 + 192i
77点:-3.0263E-14 +7.5609E-13i
   
   很明显,1点、51点、76点的值都比较大,它附近的点值
都很小,可以认为是0,即在那些频率点上的信号幅度为0。
接着,我们来计算各点的幅度值。分别计算这三个点的模值,
结果如下:
1点: 512
51点:384
76点:192
   按照公式,可以计算出直流分量为:512/N=512/256=2;
50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的
幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来
的幅度是正确的。
   然后再来计算相位信息。直流信号没有相位可言,不用管
它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,
结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再
计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,
换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。
根据FFT结果以及上面的分析计算,我们就可以写出信号的表达
式了,它就是我们开始提供的信号。


   总结:假设采样频率为Fs,采样点数为N,做FFT之后,某
一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值
除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以
N)
该点的相位即是对应该频率下的信号的相位。相位的计算
可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角
度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒
的信号,并做FFT。
要提高频率分辨率,就需要增加采样点数,
这在一些实际的应用中是不现实的,需要在较短的时间内完成
分析。解决这个问题的方法有频率细分法,比较简单的方法是
采样比较短时间的信号,然后在后面补充一定数量的0,使其长度
达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。
具体的频率细分法可参考相关文献。


[附录:本测试数据使用的matlab程序]
close all; %先关闭所有图片
Adc=2;  %直流分量幅度
A1=3;   %频率F1信号的幅度
A2=1.5; %频率F2信号的幅度
F1=50;  %信号1频率(Hz)
F2=75;  %信号2频率(Hz)
Fs=256; %采样频率(Hz)
P1=-30; %信号1相位(度)
P2=90;  %信号相位(度)
N=256;  %采样点数
t=[0:1/Fs:N/Fs]; %采样时刻


%信号
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%显示原始信号
plot(S);
title('原始信号');


figure;
Y = fft(S,N); %做FFT变换
Ayy = (abs(Y)); %取模
plot(Ayy(1:N)); %显示原始的FFT模值结果
title('FFT 模值');


figure;
Ayy=Ayy/(N/2);  %换算成实际的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %换算成实际的频率值
plot(F(1:N/2),Ayy(1:N/2));  %显示换算后的FFT模值结果
title('幅度-频率曲线图');


figure;
Pyy=[1:N/2];
for i="1:N/2"
 Pyy(i)=phase(Y(i)); %计算相位
 Pyy(i)=Pyy(i)*180/pi; %换算为角度
end;
plot(F(1:N/2),Pyy(1:N/2));  %显示相位图
title('相位-频率曲线图');



网友:

lsw 快速回复 引用回复 (0) 2008-05-16 10:01
评论: 个人认为,这么理解存在一个问题:既然是随机采样,那么每个点的地位是等同的,一大段数据,截取其中某一段,计算结果应当是相近的,可能是我没能理解上文的意思,请问这“第一点”是什么意思呢网友:computer00快速回复 引用回复 (0) 2008-05-16 11:19评论:这里所说的第一点是FFT之后的结果,不是原始的采样信号。N点信号,做N点FFT之后,就得到了N个复数。第一点就表示直流信号。对于采样点来说,随便截取一段,频率成分都是一样,就是相位不同而已。网友:happyw2004快速回复 引用回复 (0) 2008-05-17 18:06评论:顶一下,请问圈圈,如果我们不对其进行FFT,那么我们就只能得到一系列的幅度值,如果我们直接画出来,他是否就是其波形呢?FFT后,我们就可以得到他的更详细的信息如幅值,相位,频率,就可以画出你上面的那个图来.如果我们想画出他的波形图,是直接用FFT前的值来画还是用FFT后的值来画呢?还有就是,这些信号变化都很快,我们画出来如何看得清(视波器上有个好象什么可调的东西)是怎么来的,软件该如何处理,请给点介绍,或贴点资料出来,谢谢网友:computer00快速回复 引用回复 (0) 2008-05-18 21:29评论:不做FFT,看到的就是它的波形图。做FFT之后,就到了频域,可以看到频率-幅度曲线(就像我帖子中的图那样,横坐标是频率值,纵坐标是该频率下的幅度值)和频率-相位曲线。如果直接画波形图,要显示稳定的话,需要设置一个触发电平(示波器上就是调节这个来调节触发点的),当电压达到这个值时,才开始显示波形。网友:jackygao快速回复 引用回复 (0) 2008-05-27 10:12评论:顶一下,请问圈圈,上面所举的例子,50HZ的正弦的幅值为3V,是指峰峰值么?我用CVI的FFT变换出来的+-3伏的信号,分析出来的最高幅度就是1.5伏,不知是否正确?网友:computer00快速回复 引用回复 (0) 2008-05-27 17:35评论:回复山野村夫:的确是51点,是我写错了,笔误。谢谢指出,这说明你已经理解了我的意思,呵呵。回复 Jackygao:3V是指峰值。这个我帖中说得很清楚。你分析出来是1.5V,可能是忘记是除以N/2了。网友:皓离快速回复 引用回复 (0) 2008-09-11 17:20评论:右边对称的频率点是怎么得到的?网友:
computer00 快速回复 引用回复 (0)2008-09-12 01:11
评论:
计算出来的结果就是这样的。
网友:
alphifly 快速回复 引用回复 (0)2008-10-14 07:52
评论:
网友:alphifly快速回复 引用回复 (0) 2008-10-14 07:52评论:问什么赋值的计算中,在实部虚部平方和再开方后,还要除以N/2?我一直没有理解这个?是公式推导?我看到很多网络上的文章都没有除以N/2。computer00快速回复 引用回复 (0) 2008-10-14 22:57评论:那个过程是求模值。结果是一个复数,以a+bj的方式表示的,换算成模和相角值更容易看出来。网友:car快速回复 引用回复 (0) 2008-11-27 21:46评论:只理解了圈圈举得例子,但反复想想,对采样频率Fs的选取还是糊涂,因此请教圈圈:采样定理要求采样频率ns要大于信号频率的两倍。对于以采样点数采集信号的情况,1.如果我采样点数是N=1024,而且要求分析时要可分析到0.01~10Hz的信号,那么这是的采样频率Fs怎么选择?2.改变采样点数,要求分析的频率范围与1同,这时根据什么变化关系选取Fs?麻烦圈圈给予指导,谢谢!网友:computer00快速回复 引用回复 (0) 2008-11-28 14:02评论:1.采样频率大于信号带宽的2倍就可以了。这个跟分辨率无关。2.如果直接使用标准的FFT来算,要分辨到0.01Hz,那么就需要采集100秒时间的信号,至于多少个点,就要看你的采样频率了,采样频率是1000Hz,那么就需要采样100000个点做FFT。如果不能采样这么长时间,可以考虑一些细分的方法,最简单的例如补0,不过会降低精度。
网友:car快速回复 引用回复 (0) 2008-11-30 12:51评论:(1)我把两个采样频率混淆了,一个是信号采集仪器的采样频率,我用F1表示吧,仪器采集信号时,是每0.15秒采集一个点,这个频率已经固定不变,即F1=1/0.15;另一个是在做FFT变换时,有个采样频率Fs,是不是这个采样频率按着采样定理的要求选取?对问题1的回答“采样频率大于信号带宽的两倍就可以了”,能不能再说的详细点,谢谢。(2)通过你上面对问题2的讲解,意思就是频率分辨率和采样时间是倒数关系,那么可不可以这样理解:要提高频率分辨率,就必须增加采样长度,采样长度是影响频率分辨率的唯一因素?(3)我有个问题一直很困惑,看了你的文章发现你对FFT方面的解释很透彻,因此就在这里打扰你了,还请多见谅。我的实际采样间隔就是(1)中所述,现在采样点数可选为N=1024、4096或8192,对实际信号的估计是在0.01~10Hz的范围内,我用[Pxx,f]=pwelch(xn,window,noverlap,nfft,Fs,range)计算频谱,最后画频谱图,与标准的图形相比,出现的问题是图中横轴频率f与纵轴|Pxx|不能对应,就像是图形沿着横轴方向平移了一段。所以想问一下采样频率Fs的选取对横轴f有没有影响,怎么影响的?我已经详细看过了MATLAB中对pwelch这个函数的解释,并且是按着要求做的,函数解释中只说明“f的取值范围由nfft,fs,和输入量xn的值决定”,解释的不详细。"未将对象引用设置到对象的实例”每次在这里留言都出现这个对话框,为什么?网友:computer00快速回复 引用回复 (0) 2008-12-01 12:56评论:(1)就是同一个频率。Fs就是你的设备采样的频率。(2)如果就FFT而言,是的。(3)你的信号带宽差不多是10Hz,因此采样频率至少要大于20Hz,也就是采样时间要小于0.05s。
Wintel快速回复 引用回复 (0) 2009-02-04 16:02评论:(1)"假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。"(2)“按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来 的幅度是正确的。”这两点就是根据FFT的结果来得到原始信号的幅度或者是峰值。应该是只有一种说法。并不是两种说法吧。网友:computer00快速回复 引用回复 (0) 2009-02-04 19:04评论:是的。后面只是举例说明。网友:soih快速回复 引用回复 (0) 2009-08-19 16:40评论:很好啊..不过我还有个疑问,如果我想得到的是功率谱的话,是指需要把每个点的幅度平方/2么?总感觉这样做不对啊..
computer00快速回复 引用回复 (0) 2009-08-23 01:09评论:如果负载电阻是固定的,那么电压的平方就对了。
网友:adofu2008快速回复 引用回复 (0) 2009-08-30 19:45评论:请问一下圈圈:我如果采样的频率是一定的,信号的频率是一定的,那么我得到的N值不就是一定的吗?

:
computer00 快速回复 引用回复 (0) 2009-09-0621:50
评论:
那当然了

网友:lknlfy快速回复 引用回复 (0) 2009-09-23 17:55评论:我认为N不是一定的。。假如信号频率为10K,我的采样率是40K,N点的确定还要看你要多大的分辨率吧。。。f(分辨率)=fs(采样率)/N...所以N由分辨率和采样率共同决定,而与信号频率无关。.。
网友:hallowwar快速回复 引用回复 (0) 2010-03-26 08:24评论:硬是需要FFT不难,外行来说不易入门的。最生动的描述应该是:FFT把时域信号搬到频域上,直观的看各频率上的信号强弱。



相关文章推荐

FFT结果的物理意义

  • 2011年05月14日 10:35
  • 41KB
  • 下载

FFT结果的物理意义

  • 2017年02月22日 16:44
  • 38KB
  • 下载

FFT结果的物理意义【转】

FFT结果的物理意义【转】 FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采...

FFT结果的物理意义

  • 2013年12月31日 08:52
  • 27KB
  • 下载

Matlab中快速傅里叶变换FFT结果的物理意义(转载)

FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将...

FFT结果的物理意义

  • 2011年03月24日 21:38
  • 39KB
  • 下载

FFT结果的物理意义

 本文转自电脑圈圈的家当--- user1/2198/archives/2008/48202.html     FFT是离散傅立叶变换的快速算法,可以将一个信号从时域变换到频域。有些信号在时域上是很难...
  • Augusdi
  • Augusdi
  • 2011年06月19日 00:05
  • 2327

FFT结果的物理意义

转载自http://blog.sina.com.cn/s/blog_640029b301010xkv.html   FFT是离散傅立叶变换的快速算法,可以将一个信号变换 到频域。有些信号在时域上是...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:FFT结果的物理意义
举报原因:
原因补充:

(最多只允许输入30个字)