素数判定

原创 2013年12月02日 16:41:18

嗯……,这里就不多说了,直接就上代码吧,几种判定素数的方法,再加上一个素数筛:

//素性判定问题的测试版 
//具体内容请参考《计算机程序与设计基础》(第二版) 乔林 编著 P125 
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

int Is_prime1(unsigned int n);
int Is_prime2(unsigned int n);
int Is_prime3(unsigned int n);
int Is_prime4(unsigned int n);
int Is_prime5(unsigned int n);
int Is_prime6(unsigned int n);

int main()
{
    for(int i = 2; i <= 100; i++)
    {
            if(Is_prime6(i))
                printf("%8d",i);
    }
    
    system("pause");
    return 0;
}

int Is_prime1(unsigned int n)//入门版,最基础的判断素数的方法 
{
    unsigned int i = 2;
    
    while(i < n)
    {
            if(n % i == 0)
                 return 0;
            i++;
    }
    
    return 1;
}

int Is_prime2(unsigned int n)//家庭基本版,在上面的基础上加以略微优化 
{
    unsigned int i = 2;
    
    while(i <= (unsigned int)sqrt(n))
    {
            if(n % i == 0)
                 return 0;
            i++;
    }
    
    return 1;
}
    
int Is_prime3(unsigned int n)//家庭高级版,在家庭版的基础上加以优化 
{
    unsigned int i;
    
    if(n % 2 == 0)
         return 0;
         
    i = 3;
    
    while(i <= (unsigned int)sqrt(n))
    {
            if(n % 2 == 0)
                 return 0;
            i += 2;
    }
    
    return 1;
}
    
int Is_prime4(unsigned int n)//小型企业版,在上面的基础上消除浮点误差 
{
    unsigned int i;
    
    if(n % 2 == 0)
         return 0;
    i = 3;
    
    while(i <= (unsigned int)sqrt(n) + 1)
    {
            if(n % i == 0)
                 return 0;
            
            i += 2;
    }
    
    return 1;
}
    
int Is_prime5(unsigned int n)//大型企业版,在小型企业版的基础上加以小小的优化 
{
    unsigned int i,t;
    
    if(n % 2 == 0)
         return 0;
    
    i = 3;
    t = (unsigned int)sqrt(n) + 1;
    
    while(i <= t)
    {
            if(n % i == 0)
                 return 0;
            
            i += 2;
    }
    
    return 1;
}       

int Is_prime6(unsigned int n)//终极版,兼具容错功能和高效之便 
{
    unsigned int i,t;
    
    if(n <= 1)
         printf("Error");
    
    if(n == 2)
         return 1;
    
    if(n % 2 == 0)
         return 0;
    
    i = 3;
    t = (unsigned int)sqrt(n) + 1;
    
    while(i <= t)
    {
            if(n % i == 0)
                 return 0;
            
            i += 2;
    }
    
    return 1;
}

//素数筛法 
#include <iostream>
#include <fstream>
//求得素数保存在data.txt中 
const int N = 10000;

int ss[N];

int main()
{
    using namespace std;
    
    ofstream fout ("data.txt");
    
    for (int i = 2; i <= N; i++)
        ss[i] = 1;
    
    for (int i = 2; i <= N; i++)
        if(ss[i])
        {
                 int k = 2,temp;
                 
                 while((temp = k * i) <= N)
                 {
                             ss[temp] = 0;
                             k++;
                 }
                 
                 fout << i << endl;
        }
        
    return 0;
}


相关文章推荐

判定任意一个数是不是素数

  • 2014年04月22日 17:12
  • 692B
  • 下载

VC对话框素数判定及程序反应时间

  • 2011年07月19日 23:02
  • 1.83MB
  • 下载

素数判定总结

1.对于百万级别,判断单个数是否为素数,用埃拉托斯尼斯筛法打一个判断是否为素数的表预处理一下。 代码: const int N=2000000; bool isprime[N]; void d...
  • w20810
  • w20810
  • 2015年02月08日 16:11
  • 287

大素数的判定

  • 2014年03月16日 10:25
  • 456B
  • 下载

算法——素数判定方法

原始版素数表 最初刚接触算法的时候,使用了原始的方法来输出素数表: void originalPrime() { long p, d, input; int isP...
  • ran0809
  • ran0809
  • 2013年07月27日 01:41
  • 1081

素数的判定

  • 2012年05月05日 14:29
  • 244B
  • 下载

素数判定 C++ ACM

  • 2012年05月13日 14:57
  • 840B
  • 下载

素数判定算法

素数:也称质数,指在一个大于1的自然数中,满足除了1和自身以外,不能被其他自然数整除的数。与其相对立的即为合数,也即比1大且不是素数的数就是合数。注意一点,1和0既不是素数又不是合数。   ...
  • RosaRB
  • RosaRB
  • 2012年07月29日 14:42
  • 67

大素数判定

  • 2014年05月29日 10:02
  • 6KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:素数判定
举报原因:
原因补充:

(最多只允许输入30个字)