莫比乌斯函数和反演定理的理解

原创 2016年08月30日 09:34:41

这几天复习了莫比乌斯函数的运用,主要是用来解决倍数的问题的。现在就谈谈莫比乌斯函数的性质和反演定理的理解。
首先定义 u(x) 为莫比乌斯函数。他有以下性质:
1.d|mu(x)=[m==1] 其中m == 1 指m == 1 的逻辑值,也就是如果m == 1 则表达式为1 , 否则表达式为0 .上面的公式是u(x) 的定义,也就是他产生的原因。
2.u(x)是一个积性函数,也就是,u(ab)=u(a)u(b) ; 这个可以证明的,但是没什么意思。
根据上面两个东西和素数基本定理可以知道以下求法:
1.u(1)=1
2.d|pku(pk)=0 . 这样推下去,u(p)=1u(pd)(d>1)=0
3.根据积性和算术基本定理可知,任何一个数都是素数的乘积表示,这样的话有:u(1)=1,u(p1p2p3...pr)=(1)r,u(x)=0(p2x|x)
以上性质是有算术定理递推来的,所以可以使用晒法求出O(nlgn)
反演定理:g(x)=d|xf(d)f(x)=d|xu(xd)g(d) 也就是把顺序翻一下,,但是多乘一个u(x) ; 证明:
d|xu(xd)g(d)=>
d|xu(xd)m|df(d)=>
l=x/d,d=am;l=xam那么l|xm
m|xf(m)l|xmu(l)
由于d|mu(x)=[m==1] 所以上面只有当x / m == 1时才是1,其他时候为0,那么当x = m 时,原式等于f(m)。得证。
利用反演,可以找到倍数关系和所求数的关系,常用语gcd等题目中。以后再把例题更新上来。同时,这里总结几个求和的要点。
对于多重,要么通过贡献的思想得到直观的答案,但是也可以通过交换求和顺序得到数学上的推导答案。一下两点是求和性质:
1.df(d)xdg(x)=dxdg(x)f(d) 。 这个很正常的,表示的意义和上面一样,但是唯一不同是合并了,运用和提取公因式的方法。乘法分配律。显然。
2.就是把1中第一个式子的顺序变化。颠倒先后顺序。写成g(x)f(d) 的关系,只需要把后面的量提前面就可以,一般是f(d)具有求和关系,等于一个式子或者是常量的时候,对于u(x)肯定是把它放后面,反正原则就是把可以求出来的放到等式的最后面,因为最后面的等式是变量最少的,但是变量的限制最多的等式,由于变量少,所以可以求出来。

例题:1.hdu5656 CA Loves GCD最水的一题,就是简单的应用,可以把结果得到和N这一维无关。

相关文章推荐

莫比乌斯函数,数论中的战斗机

莫比乌斯函数,数论函数,由德国数学家和天文学家莫比乌斯(August Ferdinand Möbius ,1790–1868)提出。梅滕斯(Mertens)首先使用μ(n)作为莫比乌斯函数的...

莫比乌斯函数

在数论中的积性函数:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数。若对于某积性函数 f(n) ,就算a, b不互质,也有...

莫比乌斯反演

莫比乌斯函数值: int mobi(int n) { int m=1; for(int i=2;i*i

莫比乌斯函数ACM

莫比乌斯入门请耐心往下看: OK.现在可以开始刷题了。 莫比乌斯反演   HDU 1695 GCD 从区间[1, b]和[1,d]中分别选一个x, y,使得gc...

莫比乌斯函数的证明

遗忘是可怕的东西……好记性不如烂笔头讲真……命题现在假设我不知道什么是莫比乌斯函数,只知道F(x)=∑d∣xf(d)F(x)=\sum_{d\mid x}f(d)若已知F(x)F(x),求f(x)f(...

HDU 4856 (bfs 状压DP)

Tunnels Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

BZOJ 2301 浅谈莫比乌斯函数对方程化简的应用

世界真的很大 昨天狠下心来,看了一下午莫比乌斯反演,一直纠结于这到底是个什么玩意儿,但其实这道题和反演关系,的却是没有的,但这道题对于理解莫比乌斯函数的性质,还是有很大帮助的。 descripti...

BZOJ 2440 - 容斥原理 + 莫比乌斯函数的应用

找规律题?(雾。。 题目要求的是第k个无平方因子数。。
  • yearwhk
  • yearwhk
  • 2015年12月16日 21:20
  • 728

BZOJ 2820 YY的GCD(莫比乌斯函数)

给定N, M,求1 以前的容斥原理解法必然TLE,这里就得用到莫比乌斯函数(了解莫比乌斯函数请戳这里) 对于这题而言,枚举质数也会是TLE的节奏。。。...

数学(论)里的一些定理(莫比乌斯反演,傅立叶变换,数论变换...)

莫比乌斯反演 莫比乌斯反演在数论中占有重要的地位,许多情况下能大大简化运算。那么我们先来认识莫比乌斯反演公式。   定理:和是定义在非负整数集合上的两个函数,并且...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:莫比乌斯函数和反演定理的理解
举报原因:
原因补充:

(最多只允许输入30个字)