汉诺塔问题

转载 2015年07月07日 09:24:48

一,移动次数的计算

  现在有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,现在把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方,请问至少需要多少次移动,设移动次数为H(n)。

  首先我们肯定是把上面n-1个盘子移动到柱子C上,然后把最大的一块放在B上,最后把C上的所有盘子移动到B上,由此我们得出表达式:
  H⑴ = 1
  H(n) = 2*H(n-1)+1 (n>1)
  那么我们很快就能得到H(n)的一般式:
  H(n) = 2^n - 1 (n>0)

二,输出移动路径

思路:

把n-1个饼移到B,再把第n个饼移到C,最后把n-1个饼移到C。

#include <iostream>
#include<cstdio>
using namespace std;

void move(int n, char a, char b){
    printf("%c->%c\n",a,b);
} 

void hanoi(int n, char a, char b, char c){
    if(n > 0) {
        hanoi(n - 1, a, c, b);
        move(n, a, b); 
        hanoi(n - 1, c, b, a); 
    }
}

int main()
{
    int n;
    while(cin>>n){
        char a='a',b='b',c='c';
        hanoi(n,a,c,b); 
    }
    return 0;
}
举报

相关文章推荐

返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)