# codeforces-26A-Almost Prime【分解质因数】

## codeforces-26A-Almost Prime【分解质因数】

                time limit per test2 seconds    memory limit per test256 megabytes


A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and n, inclusive.

Input
Input contains one integer number n (1 ≤ n ≤ 3000).

Output
Output the amount of almost prime numbers between 1 and n, inclusive.

input
10
output
2

input
21
output
8

#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
using namespace std;
/*============分解质因数===================
prime_factor()传入n, 返回不同质因数的个数
f存放质因数，nf存放对应质因数的个数

=========================================*/

#define MAXN 200100
#define PSIZE 100000
int f[MAXN],nf[MAXN];
int plist[PSIZE], pcount=0;
bool isPrime[MAXN+1];
void initprime()
{
memset(isPrime, true, sizeof(isPrime));
int sq = sqrt((double)MAXN) + 1;
int i,j,k;
for(i = 2;i <= sq; i++)
if(isPrime[i])
for(j = 2,k = MAXN/i+1;j < k;j++)
isPrime[i*j] = false;
for( i = 2 ; i <= MAXN; i++)
if(isPrime[i])
plist[pcount++] = i;
isPrime[0] = isPrime[1] = false;
}

int prime_factor(int n) {
int cnt = 0;
int n2 = sqrt((double)n);
for(int i = 0; n > 1 && plist[i] <= n2; ++i)
if (n % plist[i] == 0) {
for (nf[cnt] = 0; n % plist[i] == 0; ++nf[cnt], n /= plist[i]);
f[cnt++] = plist[i];
}
if (n > 1) nf[cnt] = 1, f[cnt++] = n;
return cnt;
}

int main(){
int n;
cin >> n;
initprime();
int ans = 0;
for (int i = 1; i <= n; i++)
{
int cnt = prime_factor(i);

if (cnt == 2)
{
if(isPrime[f[0]] && isPrime[f[1]]) ans++;
}
memset(f,0,sizeof(f));
}
cout << ans << endl;

return 0;
}



• 本文已收录于以下专栏：

## 分解的素数

1313: 分解的素数 ] Description  定义将一个正整数n分解质因数中素数的个数为f(n)。如18=2*3*3。其中有两个3，一个2。所以f(18)=3。 Input  第一行是一个正整...
• wcdaaignn
• 2017年02月24日 12:36
• 164

## C#分解质因数

while (true) { int num = Convert.ToInt32(Console.ReadLine());//接收输入的数字，**如果你写别的我也没有意见，毕竟我也管不住你**...
• qq_33997524
• 2017年07月25日 17:37
• 140

## POJ 1365 Prime Land（分解质因数）

Description 给出一个数num的质因数分解形式，输出num-1的质因数分解形式 Input 多组输入，每组用例占一行，输入形式为p1 k1 p2 k2……pn kn(num=p1^k1...
• V5ZSQ
• 2015年09月04日 08:30
• 537

## 蓝桥杯---基础训练---分解质因数（Java）(自写)

• pangjunwei
• 2017年11月22日 16:25
• 296

## 快速分解质因数，Miller_Rabin+Pollard_rho

int getrand(){ int s=rand()%10; fo(i,1,5)s=s*10+rand()%10; return s+2; }LL quickmi(LL x,...
• samjia2000
• 2017年01月19日 18:30
• 478

## SPOJ NUMTRYE Number Theory (Easy) （pollard_rho分解质因数）

SPOJ NUMTRYE Number Theory (Easy)题意： g(n)=∑i=1nngcd(n,i)f(n)=∏i=1n(p2ki+1i+1)求f(n)g(n)%1000000007....
• qq_15714857
• 2015年09月23日 19:29
• 755

## LG的数学计划----分解质因数（Pollard-Rho算法）

1.对于我们朴素的求解质因数， 暴枚真是个好算法好吧一样的就不给出代码了， 2.对于另一种神奇的算法Pollard-Rho算法随机化算法， 与Miller robin有着密切联系， 可以先看一看两种算...
• accept_
• 2016年09月14日 22:19
• 403

## 蓝桥杯 算法设计_6 分解质因数

• huacheng1117
• 2014年03月12日 19:01
• 1432

## [Java] 练习题004: 将一个正整数分解质因数

【程序4】题目：将一个正整数分解质因数。例如：输入90,打印出90=2*3*3*5。程序分析：对n进行分解质因数，应先找到一个最小的质数k，然后按下述步骤完成：  (1)如果这个质数恰等于n，则说明分...
• shylx123
• 2011年04月25日 22:37
• 9025

## 分解质因数 模板 ACM

void Solve(LL n) 02.{ 03. p.clear(); 04. for(LL i=2; i*i
• nickwong_
• 2015年08月23日 19:16
• 1407

举报原因： 您举报文章：codeforces-26A-Almost Prime【分解质因数】 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)