codeforces-26A-Almost Prime【分解质因数】

原创 2015年11月21日 16:13:49

codeforces-26A-Almost Prime【分解质因数】

                time limit per test2 seconds    memory limit per test256 megabytes

A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and n, inclusive.

Input
Input contains one integer number n (1 ≤ n ≤ 3000).

Output
Output the amount of almost prime numbers between 1 and n, inclusive.

input
10
output
2

input
21
output
8

题目链接:cf-26A

题目大意:问从1-n的数字中,存在几个数字,他的质因数有且只有两个,并且这两个质因数都是素数

题目思路:套用分解质因数模板即可

以下是代码:

#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
using namespace std;
/*============分解质因数===================
prime_factor()传入n, 返回不同质因数的个数
f存放质因数,nf存放对应质因数的个数
先调用initprime()。
=========================================*/

#define MAXN 200100
#define PSIZE 100000
int f[MAXN],nf[MAXN];
int plist[PSIZE], pcount=0;
bool isPrime[MAXN+1]; 
void initprime()  
{  
    memset(isPrime, true, sizeof(isPrime));
    int sq = sqrt((double)MAXN) + 1; 
    int i,j,k;  
    for(i = 2;i <= sq; i++)  
        if(isPrime[i])  
    for(j = 2,k = MAXN/i+1;j < k;j++)  
        isPrime[i*j] = false;  
    for( i = 2 ; i <= MAXN; i++)  
        if(isPrime[i])    
            plist[pcount++] = i;
    isPrime[0] = isPrime[1] = false;
}  

int prime_factor(int n) {
    int cnt = 0;
    int n2 = sqrt((double)n);
    for(int i = 0; n > 1 && plist[i] <= n2; ++i)
        if (n % plist[i] == 0) {            
            for (nf[cnt] = 0; n % plist[i] == 0; ++nf[cnt], n /= plist[i]);
            f[cnt++] = plist[i];
        }
    if (n > 1) nf[cnt] = 1, f[cnt++] = n;
    return cnt;
}

int main(){
    int n;
    cin >> n;
    initprime();
    int ans = 0;
    for (int i = 1; i <= n; i++)
    {
        int cnt = prime_factor(i);

        if (cnt == 2)
        {
            if(isPrime[f[0]] && isPrime[f[1]]) ans++;
        }
        memset(f,0,sizeof(f));
    }
    cout << ans << endl;

    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【详解打表】#26 A. Almost Prime

A. Almost Prime time limit per test 2 seconds memory limit per test 256 megabytes input standa...
  • okcd00
  • okcd00
  • 2014-06-04 20:32
  • 1532

UVA 10539 Almost Prime Numbers(唯一分解定理)

题意:在区间[l, u]内找出有多少只有一个素因子的数, 且本身不是素数。 解题思路:直接使用唯一分解定理会导致超时, 所以可以将每个素因子累乘,在[l, u]内寻找有多少个,需要注意的是因为要用到...

hdu4135 Co-prime(分解质因数,容斥)

Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total...

POJ 1365 Prime Land(质因数分解)

Prime Land Time Limit: 1000MS Memory Limit: 10000K Total Submission...

UVa 19780 Again Prime?No time. (质因数分解)

先把m分解成质因数,记录下m的每个质因数在m中的个数。然后遍历1至n的每个数,对m的每个质因数分别判断包含多少个,并对这些数累加。 单独考虑每个质因数,质因数在1到n中的数量/在m中的数量,是理论上...

【Codeforces Round 326 (Div 2)B】【质因数分解】Duff in Love n的最大因子使其不为平方数倍数

B. Duff in Love time limit per test 2 seconds memory limit per test 256 megabytes i...

UVaOJ-10539-Almost Prime Numbers 解题报告

筛素数好题。题意:几乎是素数的数是这样一种数,它不是素数,但是它只有一个素因子。比如:4,8,9等。现在给你一个区间,让你统计区间内几乎是素数的数的个数。        我的解题思路:这个区...

UVa10539 Almost Prime Numbers

题意:输入两个整数L,U,统计区间[L,U]中

CodeForces 255C. Almost Arithmetical Progression (DP)

题目链接:CodeForces255C.题目大意:看起来题目给的公式很复杂,其实就是找最长的 1,2,1,2 类似这样的最长子序列. 数据小于4000.解题过程: 看到这个题首先就想到了用DP来做,...

Codeforces 256A Almost Arithmetical Progression【dp】

A. Almost Arithmetical Progression time limit per test 1 second memory limit per test 256 megabyte...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)