codeforces-26A-Almost Prime【分解质因数】

原创 2015年11月21日 16:13:49

codeforces-26A-Almost Prime【分解质因数】

                time limit per test2 seconds    memory limit per test256 megabytes

A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and n, inclusive.

Input
Input contains one integer number n (1 ≤ n ≤ 3000).

Output
Output the amount of almost prime numbers between 1 and n, inclusive.

input
10
output
2

input
21
output
8

题目链接:cf-26A

题目大意:问从1-n的数字中,存在几个数字,他的质因数有且只有两个,并且这两个质因数都是素数

题目思路:套用分解质因数模板即可

以下是代码:

#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
using namespace std;
/*============分解质因数===================
prime_factor()传入n, 返回不同质因数的个数
f存放质因数,nf存放对应质因数的个数
先调用initprime()。
=========================================*/

#define MAXN 200100
#define PSIZE 100000
int f[MAXN],nf[MAXN];
int plist[PSIZE], pcount=0;
bool isPrime[MAXN+1]; 
void initprime()  
{  
    memset(isPrime, true, sizeof(isPrime));
    int sq = sqrt((double)MAXN) + 1; 
    int i,j,k;  
    for(i = 2;i <= sq; i++)  
        if(isPrime[i])  
    for(j = 2,k = MAXN/i+1;j < k;j++)  
        isPrime[i*j] = false;  
    for( i = 2 ; i <= MAXN; i++)  
        if(isPrime[i])    
            plist[pcount++] = i;
    isPrime[0] = isPrime[1] = false;
}  

int prime_factor(int n) {
    int cnt = 0;
    int n2 = sqrt((double)n);
    for(int i = 0; n > 1 && plist[i] <= n2; ++i)
        if (n % plist[i] == 0) {            
            for (nf[cnt] = 0; n % plist[i] == 0; ++nf[cnt], n /= plist[i]);
            f[cnt++] = plist[i];
        }
    if (n > 1) nf[cnt] = 1, f[cnt++] = n;
    return cnt;
}

int main(){
    int n;
    cin >> n;
    initprime();
    int ans = 0;
    for (int i = 1; i <= n; i++)
    {
        int cnt = prime_factor(i);

        if (cnt == 2)
        {
            if(isPrime[f[0]] && isPrime[f[1]]) ans++;
        }
        memset(f,0,sizeof(f));
    }
    cout << ans << endl;

    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

分解的素数

1313: 分解的素数 ] Description  定义将一个正整数n分解质因数中素数的个数为f(n)。如18=2*3*3。其中有两个3,一个2。所以f(18)=3。 Input  第一行是一个正整...
  • wcdaaignn
  • wcdaaignn
  • 2017年02月24日 12:36
  • 164

C#分解质因数

while (true) { int num = Convert.ToInt32(Console.ReadLine());//接收输入的数字,**如果你写别的我也没有意见,毕竟我也管不住你**...
  • qq_33997524
  • qq_33997524
  • 2017年07月25日 17:37
  • 140

POJ 1365 Prime Land(分解质因数)

Description 给出一个数num的质因数分解形式,输出num-1的质因数分解形式 Input 多组输入,每组用例占一行,输入形式为p1 k1 p2 k2……pn kn(num=p1^k1...
  • V5ZSQ
  • V5ZSQ
  • 2015年09月04日 08:30
  • 537

蓝桥杯---基础训练---分解质因数(Java)(自写)

一、题目介绍 问题描述   求出区间[a,b]中所有整数的质因数分解。 输入格式   输入两个整数a,b。 输出格式   每行输出一个数的分解,形如k=a1*a2*a3...(a1 样例...
  • pangjunwei
  • pangjunwei
  • 2017年11月22日 16:25
  • 296

快速分解质因数,Miller_Rabin+Pollard_rho

int getrand(){ int s=rand()%10; fo(i,1,5)s=s*10+rand()%10; return s+2; }LL quickmi(LL x,...
  • samjia2000
  • samjia2000
  • 2017年01月19日 18:30
  • 478

SPOJ NUMTRYE Number Theory (Easy) (pollard_rho分解质因数)

SPOJ NUMTRYE Number Theory (Easy)题意: g(n)=∑i=1nngcd(n,i)f(n)=∏i=1n(p2ki+1i+1)求f(n)g(n)%1000000007....
  • qq_15714857
  • qq_15714857
  • 2015年09月23日 19:29
  • 755

LG的数学计划----分解质因数(Pollard-Rho算法)

1.对于我们朴素的求解质因数, 暴枚真是个好算法好吧一样的就不给出代码了, 2.对于另一种神奇的算法Pollard-Rho算法随机化算法, 与Miller robin有着密切联系, 可以先看一看两种算...
  • accept_
  • accept_
  • 2016年09月14日 22:19
  • 403

蓝桥杯 算法设计_6 分解质因数

蓝桥杯 算法设计_6 分解质因数
  • huacheng1117
  • huacheng1117
  • 2014年03月12日 19:01
  • 1432

[Java] 练习题004: 将一个正整数分解质因数

【程序4】题目:将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。程序分析:对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成:  (1)如果这个质数恰等于n,则说明分...
  • shylx123
  • shylx123
  • 2011年04月25日 22:37
  • 9025

分解质因数 模板 ACM

void Solve(LL n) 02.{ 03. p.clear(); 04. for(LL i=2; i*i
  • nickwong_
  • nickwong_
  • 2015年08月23日 19:16
  • 1407
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:codeforces-26A-Almost Prime【分解质因数】
举报原因:
原因补充:

(最多只允许输入30个字)