Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what"{1,#,2,3}"means? > read more on how binary tree is serialized on OJ.
OJ's Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.
Here's an example:
1
/ \
2 3
/
4
\
5
The above binary tree is serialized as"{1,2,3,#,#,4,#,#,5}".
题意:判断二叉树是否是镜像二叉树
class Solution {
public:
bool isSymmetirc(TreeNode* root)
{
if (root == NULL)
{
return true;
}
return check(root->left, root->right);
}
bool check(TreeNode* leftNode, TreeNode* rightNode)
{
if (leftNode==NULL && rightNode==NULL)
{
return true;
}
if ((leftNode!=NULL && rightNode==NULL)
|| (leftNode==NULL && rightNode!=NULL))
{
return false;
}
if (leftNode->val!=rightNode->val)
{
return false;
}
return check(leftNode->left, rightNode->right) && check(leftNode->right, rightNode->left);
}
};
本文介绍了一种检查二叉树是否为镜像对称的方法。通过递归比较二叉树的左子树和右子树来实现,具体包括对比每个节点的值及其子节点的结构。
2万+

被折叠的 条评论
为什么被折叠?



