bzoj 1051: [HAOI2006]受欢迎的牛

原创 2015年04月15日 21:56:12

Description

每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头牛被所有的牛认为是受欢迎的。

Input

第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可能出现多个A,B)

Output

一个数,即有多少头牛被所有的牛认为是受欢迎的。

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1

HINT

100%的数据N<=10000,M<=50000

写模版题练模板
tarjan缩点后统计下出度为0的有几个,大于等于2个则无解。有且仅有一个的话则统计个数即可
#include<cstdio>
#include<algorithm>
using namespace std;
struct line
{
     int s,t;
     int next;
}a[100001];
int head[10001];
int edge;
inline void add(int s,int t)
{
	 a[edge].next=head[s];
     head[s]=edge;
     a[edge].s=s;
     a[edge].t=t;
}
int dfn[10001],low[10001];
int belong[10001],indeg[10001],outdeg[10001];
int cnt,top,scc;
int s[100001];
bool v[10001];
inline void tarjan(int d)
{
     cnt++;
     dfn[d]=cnt;
     low[d]=cnt;
     top++;
     s[top]=d;
     v[d]=true;
     int i;
     for(i=head[d];i!=0;i=a[i].next)
     {
          int t=a[i].t;
          if(dfn[t]==0)
          {
               tarjan(t);
               low[d]=min(low[d],low[t]);
          }
          else if(v[t])
               low[d]=min(low[d],dfn[t]);
     }
     if(dfn[d]==low[d])
     {
          scc++;
          int t=s[top];
          while(t!=d)
          {
          	   v[t]=false;
          	   belong[t]=scc;
               top--;
               t=s[top];
          }
          v[t]=false;
          belong[t]=scc;
          top--;
     }
}
inline void count_edge()
{
     int i;
     for(i=1;i<=edge;i++)
     {
          int ss=a[i].s,tt=a[i].t;
          if(belong[ss]!=belong[tt])
          {
          	   outdeg[belong[ss]]++;
               indeg[belong[tt]]++;
          }
     }
}
int main()
{
     int n,m;
     scanf("%d%d",&n,&m);
     int i;
     int ss,tt;
     for(i=1;i<=m;i++)
     {
          scanf("%d%d",&ss,&tt);
          edge++;
          add(ss,tt);
     }
     for(i=1;i<=n;i++)
          if(dfn[i]==0)
               tarjan(i);
     count_edge();
     int s=0,st;
     for(i=1;i<=scc;i++)
     {
          if(outdeg[i]==0)
          {
               s++;
               st=i;
          }
     }
     if(s==0||s>=2)
          printf("0\n");
     else
     {
          int sum=0;
          for(i=1;i<=n;i++)
               if(belong[i]==st)
                    sum++;
          printf("%d\n",sum);
     }
     return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

BZOJ1051: [HAOI2006]受欢迎的牛

Description 每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,...

零零散散学算法之详解RMQ & LCA

2 第一节 RMQ、LCA概述          LCA:Lowest Common Ancestor,译为最近公共祖先。其解释就是说:在有根树中,找出树中任意两个节点最近的公共...
  • pi9nc
  • pi9nc
  • 2012年11月02日 21:58
  • 2312

【bzoj1051】【强连通分量】【强连通分量2006】受欢迎的牛

Description 每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也...
  • OIerHZ
  • OIerHZ
  • 2015年07月20日 16:13
  • 453

[BZOJ]1051: [HAOI2006]受欢迎的牛 强连通

Description   每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎...

BZOJ1051: [HAOI2006]受欢迎的牛

bzoj1051 受欢迎的牛

BZOJ1051: [HAOI2006]受欢迎的牛(强连通Tarjan 缩点)

题目链接 题意:每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C...

bzoj 1051 HAOI2006 受欢迎的牛 强联通分量+拓扑排序

bzoj 1051 受欢迎的牛 点击打开链接 Description 每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关...
  • DJS_K_D
  • DJS_K_D
  • 2014年12月27日 21:56
  • 322

bzoj1051【HAOI2006】受欢迎的牛

求强连通分量加缩点 不知道为什么在洛谷上交的求强连通分量过了在bzoj上交错了,于是(被迫)学了tarjan #include #include using namespace...

【Bzoj1051】 [HAOI2006]受欢迎的牛

时间限制:1S / 空间限制:256MB 【在线测试提交传送门】【问题描述】 每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系...
  • hjf1201
  • hjf1201
  • 2017年11月08日 15:20
  • 34

【连通分量】BZOJ 1051:[HAOI2006]受欢迎的牛

BZOJ 1051:[HAOI2006]受欢迎的牛Description每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系是具有传递性的,...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:bzoj 1051: [HAOI2006]受欢迎的牛
举报原因:
原因补充:

(最多只允许输入30个字)