机器学习(二)决策树

本文详细介绍了决策树的基础知识,包括决策树的概念、构造过程,并通过Python进行了实战演示,特别关注了迭代决策树的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应为要用到迭代决策树,就先学了决策树。主要参考《机器学习实战》。

一、决策树概念

决策树原理很简单,一个流程图就能明白。

图中构造了一个假想的邮件系统,通过检测域名地址和是否包含单词“曲棍球”来将邮件分类。
决策树也有分类树和回归树的分别。常见的分类数就是id3和c4.5,回归树有cart。
分类树就像上图进行分类,回归树在每个节点都会得一个预测值,以年龄为例,该预测值等于属于这个节点的所有人平均年龄。
接下来以ID3分类数为例,介绍决策树的构造。<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值