POJ1182——带权并查集

原创 2016年08月28日 20:28:22

1.问题描述:

食物链
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 64435   Accepted: 18933

Description

动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。 
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。 
有人用两种说法对这N个动物所构成的食物链关系进行描述: 
第一种说法是"1 X Y",表示X和Y是同类。 
第二种说法是"2 X Y",表示X吃Y。 
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。 
1) 当前的话与前面的某些真的话冲突,就是假话; 
2) 当前的话中X或Y比N大,就是假话; 
3) 当前的话表示X吃X,就是假话。 
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。 

Input

第一行是两个整数N和K,以一个空格分隔。 
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。 
若D=1,则表示X和Y是同类。 
若D=2,则表示X吃Y。

Output

只有一个整数,表示假话的数目。

Sample Input

100 7
1 101 1 
2 1 2
2 2 3 
2 3 3 
1 1 3 
2 3 1 
1 5 5

Sample Output

3
2.算法描述:

本题有两种思路,第一是开辟三个并查集同时进行维护

第二是开辟一个带权并查集我们来记录,不相交集合中的元素之间的相对关系

3.解释:

3.1三个并查集:

首先,我们先要明确一下三个并查集是如何作用的

1.fa[1-n] 代表的全是A物种,fa[n+1-2*n]代表的全是B物种,fa[2*n+1-3*n]代表的全是C物种

这是三个并查集,我们进行合并操作的额时候,首先需要明确一点,并查集的作用是将有“关系”的两个元素拉进同一颗树中,那么我们对于合法(真话)的操作如何进行合并操作呢

如果关系值是1,说明是同类,我们unit(x,y),unit(x+n,y+n),unit(x+2*n,y+2*n)

这三句话的含义是在这句话我们判断合法的前提下,我们认为A物种的x,y是同一物种,B物种的x,y是同一物种,C物种的x,y是同一物种(他们是有关系的)

我们认为阿门是有关系的,并且在合法的前提下,他们既然有关系,说明他们的关系是同一物种


如果关系值是2,代表x吃y,我们在判断该句话的真实性的前提下,unit(x,y+n),unit(x+n,y+2*n),unit(x+2*n,y)这三句话的含义是我们认为在这句话的正确的前提下,我们认为Ax与By,Bx与Cy,Cx与Ay是有关系的,也就是说我们认为他们存在前者对后者的捕食关系


对于判断我们的思路也是一样的

归根到底,我们对于same(A,B)里面的结果认为是正确的,我们根据其正确性来判断当前的话的正确性,否则我们进行相应的合并操作


AC代码:

#include"iostream"
#include"cstdio"
#include"cstring"
#include"cstdlib"
#define N 150010

using namespace std;

int fa[N];
int n,m;

void init()
{
	for(int i=1;i<=3*n;i++)
	{
		fa[i]=i;
	}
}

int find(int x)
{
	if(x==fa[x]) return x;
	else return fa[x]=find(fa[x]);
}

void unit(int x,int y)
{
	x=find(x);
	y=find(y);
	if(x==y) return ;
	else fa[y]=x;
    return ;
}

bool same(int x,int y)
{
	return find(x)==find(y);
}

int main()
{
	scanf("%d%d",&n,&m);
	init();
	int sum=0;
	for(int i=1;i<=m;i++)
	{
		int x,y,z;
		scanf("%d%d%d",&z,&x,&y);
		if(x>n||y>n) sum++;
		else if(z==2&&x==y) sum++;
		else
		{
			if(z==1)
			{
				if(same(x,y+n)||same(x,y+2*n)) sum++;
				else
				{
					unit(x,y);
					unit(x+n,y+n);
					unit(x+2*n,y+2*n);
				}
			}
			else
			{
				if(same(x,y)||same(x,y+2*n)) sum++;   //这里我们只判断一次same(x,y)的原因而不用same(x+n,y+n)等都判断在于我们如果same(x,y)成立,那么same(x+n,y+n)等必然也成立,我们判断一个就可以代表全部的信息了
				else
				{
					unit(x,y+n);
					unit(x+n,y+2*n);
					unit(x+2*n,y);
				}
			}
		}
	}
	printf("%d\n",sum);
	return 0;
}

3.2带权并查集

我们都知道,并查集作为不相交集合,他的优势在于我们将有关系的两个数据进行合并,然后我们用一个根节点代表着一整个数据,从未实现我们队位置关系的快速判断,现在我们的手段对于解决高级的并查集的题目已经远远不能适应了,我们不仅要知道所谓的两者之间有没有关系,我们还要知道,两者之间的相对关系,本体作为一个绝好的例子,向我们说明了,相对的关系我们如何进行判断,我们采用带权的并查集

这里我们首先要明确,我们的权是带有方向的

在这里我先致歉,本人愚笨未能考虑出大神的向量思维的玄妙,这我只能证明方法的正确性,对于方法的来源 和具体作用却是真的一知半解

在这里我的讲解这是局限于我们对这道题的理解,非常的抱歉


首先我们将节点重新进行定义,我们不仅需要父亲域,我们还需要对于父亲的关系域,注意,在这里我们对于发亲的关系域是从本节点指向父亲节点的向量

typedef struct node
{
       int fa;
       int re;   //记录和父亲之间的关系,0代表同类,1代表被父亲吃,2代表吃父亲
};

之后对于find函数我们不仅要进行路径压缩(在本题的带权并查集的问题中,路径压缩是必须的,因为我们要通过根节点进行比较,我们对于根节点的额直接关系是必须要知道的,不进行路径压缩,我们的父亲节点就不一定是根节点,那么我们的关系域就不一定是针对根节点的),我们还要对关系域进行更新


在这里我本人对计算关系域的正确性的所有情况都进行了证明,是完全正确的也是非常玄妙的,为什么取模就可以实现这么完美有优秀的思想转变?百思不得其解

在这里,详细注释参考代码或者网上大神的讲解点击打开链接

AC代码:

#include"iostream"
#include"cstdio"
#include"cstdlib"
#include"cstring"
#define N 50010

using namespace std;

typedef struct node
{
	int fa;
	int re;
}point;

point data[N];
int n,m;

void init()
{
	for(int i=1;i<=n;i++)
	{
		data[i].fa=i;
		data[i].re=0;
	}
}

int find(int x)
{
	if(x==data[x].fa) return x;
	else
	{
		int temp=data[x].fa;   //注意,这里我们要首先保存该节点的父亲节点,因为我们修改关系域的时候要用到和原父亲的关系,本人在这里WA了,没有保存,直接原父亲的标号
		data[x].fa=find(temp);
		data[x].re=(data[x].re+data[temp].re)%3;   //该式子可以证明
		return data[x].fa;
	}
}

int main()
{
	scanf("%d%d",&n,&m);
	init();
	int count=0;
	for(int i=1;i<=m;i++)
	{
		int x,y,z;
		scanf("%d%d%d",&z,&x,&y);
		if(x>n||y>n) count++;
		else if(z==2&&x==y)	count++;
		else
		{
			int rootx=find(x);
			int rooty=find(y);
			if(rootx==rooty)
			{
				if(z==2&&(z-1!=(data[y].re+3-data[x].re)%3)) count++;   //向量的表示法
				if(z==1&&data[x].re!=data[y].re) count++;
			}
			else
			{
				data[rooty].fa=rootx;
				data[rooty].re=(z-1+3-data[y].re+data[x].re)%3;   //向量的表示法
			}
		}
	}
	printf("%d\n",count);
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ1182 - 食物链(带权并查集)

题目链接:http://poj.org/problem?id=1182题目大意:动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。 现有N个动物,以1-...

POJ1182_带权并查集基础(注释很详尽)

/* 带权并查集是普通并查集的一个拓展。 普通的并查集只是集合,而带权并查集的集合是有关系的集合。集合中的元素有他们之间的相互关系 */#include using namespace std; co...

poj1182(食物链)----带权并查集

这道题,刚开始开了3个并查集,各种关系把我搞得头晕,已提交就是wa,怎么也找不出错误,上网查题解发现是并查集姿势不对!!! 只需开一个并查集,只要能确定关系就扔进并查集里,其中每个元素与老大哥的关系...

poj 1182 食物链 【带权并查集】

食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 50713   Accepted:...

POJ 1182 食物链 (带权并查集)

食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 47885   Accepted: 13954 ...

poj 1182 食物链 //带权并查集

食物链 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu Submit Status Practi...
  • jerans
  • jerans
  • 2016年11月15日 21:12
  • 87

poj 1182 食物链(带权并查集)

题目链接: 点击打开链接 题目大意: 给出一些关系,判断矛盾的个数,先说出的未被反驳的语句我们认为是正确的 题目分析: 这种题很明显是集合的问题,但是是一个有关系的集合,所以我们可以利用...

POJ 1182 食物链(带权并查集)

哈哈哈 第一天脑子疼没看懂,第二天一看,也就那么回事嘛。 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。 现有N个动物,以1-N编号。每个动物都是...

POJ 1182 食物链 带权并查集

 转载 http://blog.csdn.net/c0de4fun/article/details/7318642/#comments #include #include #inclu...
  • zxiaopp
  • zxiaopp
  • 2015年10月22日 15:33
  • 156

poj1182食物链(带权并查集+路径压缩)

食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 60260   Accepted: 17665 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ1182——带权并查集
举报原因:
原因补充:

(最多只允许输入30个字)