关闭

错误Tensor is not an element of this graph tensorflow

标签: tensorflow
913人阅读 评论(0) 收藏 举报
分类:

1、说明:tensorflow使用图来定义计算,在session中来执行图中定义的计算,如果没有显式的说明,那么session就跟默认的图相关联.graph 和 session应该是一一对应的.下面,举例说明,session如果和graph不一一对应的话,会出现error

import tensorflow as tf

def activation(e, f, g):

  return e + f + g

with tf.Graph().as_default():
  a = tf.constant([5, 4, 5], name='a')
  b = tf.constant([0, 1, 2], name='b')
  c = tf.constant([5, 0, 5], name='c')

  res = activation(a, b, c)

init = tf.initialize_all_variables()

with tf.Session() as sess:
  # Start running operations on the Graph.
  sess.run(init)
  hi = sess.run(res)
  print hi

说明:运行该脚本会报错:is not an element of this graph。该错误的意思就是说操作不在图中,也就是和我们的session相关联的图中并没有该操作.why?

2、分析原因:

首先,tensorflow会为我们指定一张默认的图.然后sesssion会直接和该默认图相关联.除非我们自定义一张图.不然,我们的操作都是在那张默认图上的.然后我们分析报错的代码:

import tensorflow as tf

def activation(e, f, g):

  return e + f + g

with tf.Graph().as_default():
  a = tf.constant([5, 4, 5], name='a')
  b = tf.constant([0, 1, 2], name='b')
  c = tf.constant([5, 0, 5], name='c')

  res = activation(a, b, c)
说明:此段代码描述的是,新增一张图,然后在该图上去定义操作,也就是目前我们有两张图,一张是系统自定义的图.

init = tf.initialize_all_variables()

with tf.Session() as sess:
  # Start running operations on the Graph.
  sess.run(init)
  hi = sess.run(res)
  print hi
说明:此段代码,其实是描述的是,在默认的图上去定义了初始化操作,然后想在默认图上去执行res操作,注意res操作是在我们自定义的图上的。所以,当然是会报错的.

修改一:

import tensorflow as tf

def activation(e, f, g):

  return e + f + g

with tf.Graph().as_default():
  a = tf.constant([5, 4, 5], name='a')
  b = tf.constant([0, 1, 2], name='b')
  c = tf.constant([5, 0, 5], name='c')

  res = activation(a, b, c)

init = tf.initialize_all_variables()

with tf.Session() as sess:
  # Start running operations on the Graph.
  sess.run(init)
  #hi = sess.run(res)
  #print hi
说明:这样修改就没问题,只在session上运行init操作,也就是在默认图上执行session操作.

修改二:

import tensorflow as tf

def activation(e, f, g):

  return e + f + g

with tf.Graph().as_default():
  a = tf.constant([5, 4, 5], name='a')
  b = tf.constant([0, 1, 2], name='b')
  c = tf.constant([5, 0, 5], name='c')

  res = activation(a, b, c)

  init = tf.initialize_all_variables()

  with tf.Session() as sess:
    # Start running operations on the Graph.
    sess.run(init)
    hi = sess.run(res)
    print hi

说明:把所有的操作都定义在我们指定的图上面,并且,session也定义在缩进内,相当于该session只和我们定义的图相关联,只执行我们定义在图内的操作,这样就不会报错.



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:357820次
    • 积分:5755
    • 等级:
    • 排名:第4707名
    • 原创:227篇
    • 转载:42篇
    • 译文:0篇
    • 评论:58条
    最新评论