算法复习之两路归并排序

原创 2015年07月09日 16:32:02

两路归并排序

最差时间复杂度:O(nlogn)
平均时间复杂度:O(nlogn)
最差空间复杂度:O(n)
稳定性:稳定

两路归并排序(Merge Sort),也就是我们常说的归并排序,也叫合并排序。它是建立在归并操作上的一种有效的排序算法,归并操作即将两个已经排序的序列合并成一个序列的操作。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
归并操作的基本步骤如下:
1.申请两个与已经排序序列相同大小的空间,并将两个序列拷贝其中;
2.设定最初位置分别为两个已经拷贝排序序列的起始位置,比较两个序列元素的大小,依次选择相对小的元素放到原始序列;
3.重复2直到某一拷贝序列全部放入原始序列,将另一个序列剩下的所有元素直接复制到原始序列尾。

设归并排序的当前区间是R[low..high],分治法的三个步骤是:
1.分解:将当前区间一分为二,即求分裂点
2.求解:递归地对两个子区间R[low..mid]和R[mid+1..high]进行归并排序;
3.组合:将已排序的两个子区间R[low..mid]和R[mid+1..high]归并为一个有序的区间R[low..high]。
递归的终结条件:子区间长度为1(一个记录自然有序)。

#include<iostream>
void prin(int *list,int len)
{
    for(int i = 0 ;i<len;++i)
        std::cout<<list[i]<<" ";
    std::cout<<std::endl;
}
/*
*将数据归并
*params list:待排序的数组,low: 一个子块的
*/
void MergeSort(int *list,int low,int mid,int high)
{
    int in1 = mid-low ; //第一路的数量
    int in2 = high-mid+1 ;//第二路的数量
    int i,j,k ;
    int *left = NULL ;
    int *right = NULL ;
    left = new int[in1] ;//配置left的空间
    right = new int[in2] ;//配置right的空间
    for(i = 0 ;i<in1;++i) //将low---mid-1中的元素添加到left中
        left[i] = list[low+i] ;
    for(i = 0 ;i<in2;++i)//将mid--high中的元素添加到right中
        right[i] = list[mid+i] ;
    i = j = 0 ,k = low ;
    while(i<in1&&j<in2)//将两组元素有序的合并
    {
        if(left[i] < right[j])
            list[k++] = left[i++] ;
        else
            list[k++] = right[j++] ;
    }
    for(;i<in1;i++)//剩余left中的元素添加到数组中
        list[k++] = left[i] ;
    for(;j<in2 ;j++)//剩余right中的元素添加到数组中
        list[k++] = right[j++] ;
    delete[] left;//回收空间
    delete[] right;//回收空间
}
/*
*归并排序法
*list待排序的数组,low:操作元素的位置,high:待操作元素的位置
*/
void MergeSort1(int *list,int low,int high)
{
    if(low < high)
    {
        int mid = (low+high)/2 ; //找分割点
        MergeSort1(list,low,mid) ;//划分为第一路
        MergeSort1(list,mid+1,high) ;//划分为第二路
        MergeSort(list,low,mid+1,high) ;//合并
    }
}
int main()
{
    int a[] = {8,5,2,4,9,0,1,6,7,3} ;
    MergeSort1(a,0,sizeof(a)/sizeof(int)-1) ;
    prin(a,10) ;
    system("pause") ;
    return 0 ;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

递归归并排序算法

  • 2017年11月02日 22:33
  • 2KB
  • 下载

归并排序算法

  • 2013年10月27日 09:56
  • 5KB
  • 下载

算法导论复习(2) 归并排序

归并排序时间复杂度 平均: θ(nlgn) 最好: O (nlgn) 最坏:O(nlgn) 空间复杂度:O(1) 课本在讲归并排序之前...

归并排序算法代码实现

  • 2012年11月15日 19:20
  • 2KB
  • 下载

归并排序(merge sort)——数据结构与算法复习

因为校园招聘马上要开始 了,所以马上来温习一下 数据结构与算法的内容,今天为大家带来我刚写的还带有余温的归并排序——merge sort。 废话不说,代码端上(用java实现的泛型数组排序): ...

归并排序算法程序模拟

  • 2017年03月30日 23:47
  • 36KB
  • 下载

排序算法复习之——内部排序算法之——归并排序

排序算法复习之——内部排序算法之归并排序 归并排序 归并排序是将若干个已排序的文件合成一个有序的文件。 两路归并排序算法的思路:设两个有序的文件放在同一向量中相邻的位置上,即A[low…m]与A...

归并排序算法

  • 2011年11月03日 10:23
  • 15KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:算法复习之两路归并排序
举报原因:
原因补充:

(最多只允许输入30个字)