算法复习之两路归并排序

原创 2015年07月09日 16:32:02

两路归并排序

最差时间复杂度:O(nlogn)
平均时间复杂度:O(nlogn)
最差空间复杂度:O(n)
稳定性:稳定

两路归并排序(Merge Sort),也就是我们常说的归并排序,也叫合并排序。它是建立在归并操作上的一种有效的排序算法,归并操作即将两个已经排序的序列合并成一个序列的操作。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
归并操作的基本步骤如下:
1.申请两个与已经排序序列相同大小的空间,并将两个序列拷贝其中;
2.设定最初位置分别为两个已经拷贝排序序列的起始位置,比较两个序列元素的大小,依次选择相对小的元素放到原始序列;
3.重复2直到某一拷贝序列全部放入原始序列,将另一个序列剩下的所有元素直接复制到原始序列尾。

设归并排序的当前区间是R[low..high],分治法的三个步骤是:
1.分解:将当前区间一分为二,即求分裂点
2.求解:递归地对两个子区间R[low..mid]和R[mid+1..high]进行归并排序;
3.组合:将已排序的两个子区间R[low..mid]和R[mid+1..high]归并为一个有序的区间R[low..high]。
递归的终结条件:子区间长度为1(一个记录自然有序)。

#include<iostream>
void prin(int *list,int len)
{
    for(int i = 0 ;i<len;++i)
        std::cout<<list[i]<<" ";
    std::cout<<std::endl;
}
/*
*将数据归并
*params list:待排序的数组,low: 一个子块的
*/
void MergeSort(int *list,int low,int mid,int high)
{
    int in1 = mid-low ; //第一路的数量
    int in2 = high-mid+1 ;//第二路的数量
    int i,j,k ;
    int *left = NULL ;
    int *right = NULL ;
    left = new int[in1] ;//配置left的空间
    right = new int[in2] ;//配置right的空间
    for(i = 0 ;i<in1;++i) //将low---mid-1中的元素添加到left中
        left[i] = list[low+i] ;
    for(i = 0 ;i<in2;++i)//将mid--high中的元素添加到right中
        right[i] = list[mid+i] ;
    i = j = 0 ,k = low ;
    while(i<in1&&j<in2)//将两组元素有序的合并
    {
        if(left[i] < right[j])
            list[k++] = left[i++] ;
        else
            list[k++] = right[j++] ;
    }
    for(;i<in1;i++)//剩余left中的元素添加到数组中
        list[k++] = left[i] ;
    for(;j<in2 ;j++)//剩余right中的元素添加到数组中
        list[k++] = right[j++] ;
    delete[] left;//回收空间
    delete[] right;//回收空间
}
/*
*归并排序法
*list待排序的数组,low:操作元素的位置,high:待操作元素的位置
*/
void MergeSort1(int *list,int low,int high)
{
    if(low < high)
    {
        int mid = (low+high)/2 ; //找分割点
        MergeSort1(list,low,mid) ;//划分为第一路
        MergeSort1(list,mid+1,high) ;//划分为第二路
        MergeSort(list,low,mid+1,high) ;//合并
    }
}
int main()
{
    int a[] = {8,5,2,4,9,0,1,6,7,3} ;
    MergeSort1(a,0,sizeof(a)/sizeof(int)-1) ;
    prin(a,10) ;
    system("pause") ;
    return 0 ;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

改进的两路归并排序算法

两路归并排序所需时间主要包括划分子序列的时间。以及两个子序列分别排序的时间和归并的时间。划分子序列的时间是一个常数,可以不考虑,最后的归并时间与元素的个数 n 线性相关, 因此,对于一个长度为n的元素...
  • wu_lai_314
  • wu_lai_314
  • 2012年12月30日 13:15
  • 2818

两路归并排序算法

以下内容为程序代码:#include int mergesort(int p[], int n); extern int insertsort(int p[], int n); extern int...
  • lionkid
  • lionkid
  • 2005年08月27日 23:33
  • 981

改进的归并排序算法

归并排序的思想在于divide and conquer。一般的归并排序的时间复杂度为O(nlogn)。由于需要一个附加的同样长度的辅助空间,所以它的空间复杂度为O(n)。在conquer时,笔者尝试将...
  • xiefubao
  • xiefubao
  • 2014年01月16日 16:38
  • 847

排序算法八:归并排序

排序算法八:归并排序 引言在我的博文《“主宰世界”的10种算法短评》中给出的首个算法就是高效的排序算法。本文将对排序算法做一个全面的梳理,从最简单的“冒泡”到高效的堆排序等。系列博文的前七篇分别讲述了...
  • LG1259156776
  • LG1259156776
  • 2015年09月27日 20:34
  • 1038

两路归并排序

两路归并排序(升序排列)  (平均/最差)时间复杂度O(NlogN) 将两个有序的单链表合并为一个有序的单链表,默认是按升序排列的。 合并操作是非常适合用递归来完成的一类操作,递归实现将会比迭...
  • zgaoq
  • zgaoq
  • 2017年01月25日 23:06
  • 490

算法复习之归并排序

/** * 归并排序,分治思想的一种体现 * 事件复杂度:最好最坏都是O(nlogn),辅助空间是O(n) * @author Feng * */ public class MergeSor...
  • qq_16166139
  • qq_16166139
  • 2016年04月17日 10:43
  • 201

自底向上归并排序

#include "util.h" /* 自底向上归并排序: 首先将大问题拆成小问题,第一轮左半部及右半部的每组数据都为1,进行归并排序 第二轮左半部及右半部每组数据个数都为2,进行归并排序 第三轮...
  • liujianfeng1984
  • liujianfeng1984
  • 2015年08月02日 09:05
  • 1051

[排序算法]--归并排序的Java实现

归并排序(2-路归并):归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,归并排序将两个已排序的表合并成一个表。 下面先看...
  • u010853261
  • u010853261
  • 2017年02月06日 16:14
  • 1158

二路归并排序算法(递归&非递归)

归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的,然后再把有序子序列合并为整体有序序列。 归并排序是建立在归并操作上的...
  • prstaxy
  • prstaxy
  • 2012年11月09日 14:31
  • 17508

数据结构实验之排序五:归并求逆序数(讲解归并排序算法)

Problem Description 对于数列a1,a2,a3…中的任意两个数ai,aj (i  aj,那么我们就说这两个数构成了一个逆序对;在一个数列中逆序对的总数称之为逆序数,如数列 1 6 ...
  • Ameir_yang
  • Ameir_yang
  • 2016年12月11日 22:09
  • 975
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:算法复习之两路归并排序
举报原因:
原因补充:

(最多只允许输入30个字)