关闭
当前搜索:

额,双曲守恒律

双曲守恒律的ENO格式和WENO格式 问题描述 考虑下述Burgers方程的初值问题 {ut+(u2/2)x=0−1≤x≤1,t>0u(x,0)=u0(x)=sin(πx)periodic  B.C.  for  x" role="presentation">⎧⎩⎨⎪⎪...
阅读(111) 评论(1)

常用守恒格式求解双曲问题(Lax-Friedrichts、local Lax-F、Roe、Engquist-Osher、Godunov、Lax-Wendroff)

Burgers方程的守恒格式求解(Proj No.1)陆嵩 计算数学问题描述我们对下述Burgers方程的初边值问题 ⎧⎩⎨⎪⎪⎪⎪ut+(u2/2)x=0u(x,0)=u0(x)=sin(πx+π)periodic  B.C.  for  x−1≤x≤1,t>0\label{q} \left \{ \begin{aligned} & u_t + (u^2/2)_x = 0 & -1\leq x...
阅读(125) 评论(0)

Hermite多项式正交性证明

所谓的Hermite多项式{Hn}\{H_n\}就是在区间(−∞,∞)(-\infty,\infty)上关于权函数e−x2e^{-x^2}所构成的直交系。它可以通过如下的表达式来定义: Hn(x)=ex2(ddx)n(e−x2)H_n(x)= e^{x^2}(\frac{d}{dx})^n(e^{-x^2}). 易知,Hn(x)H_n(x)是个n次多项式;易证,Hn(x)H_n(x)的最高次项系数...
阅读(96) 评论(0)

间断初值双曲守恒问题的Lax-Friedrichs和后向欧拉数值解法

间断初值双曲守恒问题的Lax-Friedrichs和后向欧拉数值解法我们用求解PDE常用的Backwand Euler和Lax-Friedrichs数值方法来求解如下双曲问题:首先回顾一下双曲问题中一些经典的有限差分格式:- 该黎曼问题的精确解为:计算精确解Matlab代码:function u = ExSolu( x, t ) %计算精确解,这里x支持向量输入,输出多个精确解 a = 1;%设置a...
阅读(71) 评论(0)

Matlab如何制作和保存gif动图

在Mathematica当中,有Export函数可以很方便地将你绘出的多张图片合成为一张gif动图,在Matlab当中有没有类似的函数呢?当然,没有用起来那么方便的。但是Matlab可以使用imwrite函数进行gif的复写叠加形成gif动图,这也是最为普遍的一种方法。 动机来源于很多时候,你想要向别人讲解或者展示某个函数的变化过程,或者要说明某个变化的物理过程(比如说流体),利用matlab的类型...
阅读(449) 评论(0)

共轭梯度(CG)算法

共轭梯度(CG)方法计算数学与科学工程计算研究所 陆嵩简单介绍共轭梯度方法也是一种迭代方法,不同于Jacobi,Gauss-Seidel和SOR方法,理论上只要n步就能找到真解,实际计算中,考虑到舍入误差,一般迭代3n到5n步,每步的运算量相当与矩阵乘向量的运算量,对稀疏矩阵特别有效。 共轭梯度方法对于求解大型稀疏矩阵是很棒的方法,但是这个方法看起来总不是太靠谱。这个方法也不是越迭代精度越高,有...
阅读(234) 评论(0)

SOR和SSOR迭代

SOR和SSOR迭代计算数学与科学工程计算研究所 陆嵩基本思想对于一般的大型稀疏方程组的求解,我们一般使用迭代方法求解,而古典的迭代方法中,松弛方法最优。对于Jacobi迭代,Gauss-Seidel迭代和(对称)超松弛方法迭代,我们可以简单地用矩阵分裂的思想来考虑这个问题,也可以从方程组的角度来理解这个问题。Jacobi迭代是将第i个方程中的第i个分量单独挪到一边,每个方程单独迭代的过程。Gau...
阅读(179) 评论(0)

**方程组求解的切比雪夫半迭代加速方法**

方程组求解的切比雪夫半迭代加速方法计算数学与科学工程计算研究所 陆嵩背景介绍解方程组的迭代算法有Jacobi迭代,SOR方法等,但是对于一般的矩阵,这类算法不一定收敛,即使收敛,也有可能收敛得很慢。所以我们试图找到一个方法,来加速迭代算法的收敛速度。基本思想考虑迭代方法如下,GG为迭代矩阵 xk+1=Gxk+c\label{1} x_{k+1} = Gx_k+c 这里计算xk+1x_{k+1...
阅读(188) 评论(0)

范德蒙德和Teoplitz方程组的解法

范德蒙德和Teoplitz方程组的解法计算数学与科学工程计算研究所 陆嵩简单介绍工程中的很多实际问题的处理,比如说图像处理的某些情况,最后往往归结为比较容易处理的Vandermonde方程组和Teoplitz方程组的求解问题,因此对于这类特殊问题的快速求解方法就显得尤为重要。所谓Vandermonde方程组,指的是如下方程组: Vz=b Vz=b 其中V是Vandermonde矩阵, V=...
阅读(126) 评论(0)

**解方程组的列主元高斯消元法和Cholesky分解**

解方程组的列主元高斯消元法和Cholesky分解计算数学与科学工程计算研究所 陆嵩基本思想一般的高斯消元法的运算量为O(n3)O(n^3),这是我们所不能接受的。高斯消元法本质上就是矩阵的LULU分解,高斯消元的过程,其实蕴含着求解L−1bL^{-1}b的过程。如何矩阵的所有顺序主子式都不为零,那么LULU 分解是存在且唯一的,那么正定矩阵一定可进行这个分解。普通的高斯消元方法,引起的误差比较大...
阅读(222) 评论(0)

从多项式乘法来看快速傅里叶变换

从多项式乘法来看快速傅里叶变换 如果要列举二十一世纪最伟大十大算法,我想FFT是榜上有名的。不论你是数学系还是计算机系的学生,不管你是学理论的还是搞应用的,我想,你都应该懂点快速傅里叶变换。 多项式乘法假定有两个多项式,如下: A(x)=a0+a1x+⋯+an−1xn−1A(x) = a_0+a_1x+\cdots + a_{n-1}x^{n-1}B(x)=b0+b1x+⋯+bn−1xn−1B...
阅读(196) 评论(0)

关于matlab的table数据结构的使用

关于matlab的table数据结构的使用 matlab中比较好使的数据结构有数组、矩阵、元胞数组、结构数组等等,但随着大数据的普及,在2013以以上版本的的matlab中,出现了类似R语言中的列表一样的一个新的数据结构——table。 关于table的简单的介绍可以参考: Matlab table数据结构三篇 配合着doc文档,很快就能驾轻就熟。然而Matlab求全不求精,数据分析和处理很...
阅读(1754) 评论(0)

几个R语言画图小程序分享

三维图 x=seq(-5,5,by=0.1) #步长很小时画的图就是黑色的了,因为都是画格子的黑线的颜色 y=x x1=dnorm(x,0,1) #dnorm()为正态分布密度函数 z=outer(x1,x1) persp(x,y,z,theta =30,phi = 25,expand = 0.5,col = "Blue2") 等高线图library(MASS) Sigma <- matrix(c...
阅读(290) 评论(0)

R语言基础练习与入门实践

提供几个R语言的入门练习,让同学们更快地了解和掌握R语言编程。 练习: 熟练使用R软件实践1:最初几步x=1:100#把1,2,...,100个整数向量赋值到x (x=1:100) #同上, 只不过显示出来 sample(x,20) #从1,...,100中随机不放回地抽取20个值作为样本 set.seed(0);sample(1:10,3)#先设随机种子再抽样. #从1,...,200000中随机...
阅读(686) 评论(0)

假设检验与参数估计的R语言实现

假设检验是推论统计中用于检验统计假设的一种方法。而“统计假设”是可通过观察一组随机变量的模型进行检验的科学假说。一旦能估计未知参数,就会希望根据结果对未知的真正参数值做出适当的推论。 统计上对参数的假设,就是对一个或多个参数的论述。而其中欲检验其正确性的为零假设(null hypothesis),零假设通常由研究者决定,反应研究者对未知参数的看法。相对于零假设的其他有关参数之论述是备择假设(alt...
阅读(399) 评论(0)
203条 共14页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:295509次
    • 积分:4746
    • 等级:
    • 排名:第7233名
    • 原创:202篇
    • 转载:1篇
    • 译文:0篇
    • 评论:49条
    博客专栏
    最新评论