关闭

共轭梯度(CG)算法

共轭梯度(CG)方法计算数学与科学工程计算研究所 陆嵩简单介绍共轭梯度方法也是一种迭代方法,不同于Jacobi,Gauss-Seidel和SOR方法,理论上只要n步就能找到真解,实际计算中,考虑到舍入误差,一般迭代3n到5n步,每步的运算量相当与矩阵乘向量的运算量,对稀疏矩阵特别有效。 共轭梯度方法对于求解大型稀疏矩阵是很棒的方法,但是这个方法看起来总不是太靠谱。这个方法也不是越迭代精度越高,有...
阅读(27) 评论(0)

SOR和SSOR迭代

SOR和SSOR迭代计算数学与科学工程计算研究所 陆嵩基本思想对于一般的大型稀疏方程组的求解,我们一般使用迭代方法求解,而古典的迭代方法中,松弛方法最优。对于Jacobi迭代,Gauss-Seidel迭代和(对称)超松弛方法迭代,我们可以简单地用矩阵分裂的思想来考虑这个问题,也可以从方程组的角度来理解这个问题。Jacobi迭代是将第i个方程中的第i个分量单独挪到一边,每个方程单独迭代的过程。Gau...
阅读(25) 评论(0)

**方程组求解的切比雪夫半迭代加速方法**

方程组求解的切比雪夫半迭代加速方法计算数学与科学工程计算研究所 陆嵩背景介绍解方程组的迭代算法有Jacobi迭代,SOR方法等,但是对于一般的矩阵,这类算法不一定收敛,即使收敛,也有可能收敛得很慢。所以我们试图找到一个方法,来加速迭代算法的收敛速度。基本思想考虑迭代方法如下,GG为迭代矩阵 xk+1=Gxk+c\label{1} x_{k+1} = Gx_k+c 这里计算xk+1x_{k+1...
阅读(29) 评论(0)

范德蒙德和Teoplitz方程组的解法

范德蒙德和Teoplitz方程组的解法计算数学与科学工程计算研究所 陆嵩简单介绍工程中的很多实际问题的处理,比如说图像处理的某些情况,最后往往归结为比较容易处理的Vandermonde方程组和Teoplitz方程组的求解问题,因此对于这类特殊问题的快速求解方法就显得尤为重要。所谓Vandermonde方程组,指的是如下方程组: Vz=b Vz=b 其中V是Vandermonde矩阵, V=...
阅读(18) 评论(0)

**解方程组的列主元高斯消元法和Cholesky分解**

解方程组的列主元高斯消元法和Cholesky分解计算数学与科学工程计算研究所 陆嵩基本思想一般的高斯消元法的运算量为O(n3)O(n^3),这是我们所不能接受的。高斯消元法本质上就是矩阵的LULU分解,高斯消元的过程,其实蕴含着求解L−1bL^{-1}b的过程。如何矩阵的所有顺序主子式都不为零,那么LULU 分解是存在且唯一的,那么正定矩阵一定可进行这个分解。普通的高斯消元方法,引起的误差比较大...
阅读(33) 评论(0)

从多项式乘法来看快速傅里叶变换

从多项式乘法来看快速傅里叶变换 如果要列举二十一世纪最伟大十大算法,我想FFT是榜上有名的。不论你是数学系还是计算机系的学生,不管你是学理论的还是搞应用的,我想,你都应该懂点快速傅里叶变换。 多项式乘法假定有两个多项式,如下: A(x)=a0+a1x+⋯+an−1xn−1A(x) = a_0+a_1x+\cdots + a_{n-1}x^{n-1}B(x)=b0+b1x+⋯+bn−1xn−1B...
阅读(49) 评论(0)

关于matlab的table数据结构的使用

关于matlab的table数据结构的使用 matlab中比较好使的数据结构有数组、矩阵、元胞数组、结构数组等等,但随着大数据的普及,在2013以以上版本的的matlab中,出现了类似R语言中的列表一样的一个新的数据结构——table。 关于table的简单的介绍可以参考: Matlab table数据结构三篇 配合着doc文档,很快就能驾轻就熟。然而Matlab求全不求精,数据分析和处理很...
阅读(416) 评论(0)

几个R语言画图小程序分享

三维图 x=seq(-5,5,by=0.1) #步长很小时画的图就是黑色的了,因为都是画格子的黑线的颜色 y=x x1=dnorm(x,0,1) #dnorm()为正态分布密度函数 z=outer(x1,x1) persp(x,y,z,theta =30,phi = 25,expand = 0.5,col = "Blue2") 等高线图library(MASS) Sigma <- matrix(c...
阅读(129) 评论(0)

R语言基础练习与入门实践

提供几个R语言的入门练习,让同学们更快地了解和掌握R语言编程。 练习: 熟练使用R软件实践1:最初几步x=1:100#把1,2,...,100个整数向量赋值到x (x=1:100) #同上, 只不过显示出来 sample(x,20) #从1,...,100中随机不放回地抽取20个值作为样本 set.seed(0);sample(1:10,3)#先设随机种子再抽样. #从1,...,200000中随机...
阅读(413) 评论(0)

假设检验与参数估计的R语言实现

假设检验是推论统计中用于检验统计假设的一种方法。而“统计假设”是可通过观察一组随机变量的模型进行检验的科学假说。一旦能估计未知参数,就会希望根据结果对未知的真正参数值做出适当的推论。 统计上对参数的假设,就是对一个或多个参数的论述。而其中欲检验其正确性的为零假设(null hypothesis),零假设通常由研究者决定,反应研究者对未知参数的看法。相对于零假设的其他有关参数之论述是备择假设(alt...
阅读(177) 评论(0)

曲线拟合

曲线拟合,俗称拉曲线,是一种把现有数据透过数学方法来代入一条数式的表示方式。科学和工程问题可以通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合 (fitting)。交通和aqi拟合 w=read.table("日拥堵指数和AQI数据.txt") plot(w$V1,w$V2,pch=20,x...
阅读(109) 评论(0)

R语言做回归分析

回归分析(英语:Regression Analysis)是一种统计学上分析数据的方法,目的在于了解两个或多个变数间是否相关、相关方向与强度,并建立数学模型以便观察特定变数来预测研究者感兴趣的变数。更具体的来说,回归分析可以帮助人们了解在只有一个自变量变化时因变量的变化量。一般来说,通过回归分析我们可以由给出的自变量估计因变量的条件期望。 回归的最早形式是最小二乘法,勒让德和高斯都将该方法应用于从天文...
阅读(102) 评论(0)

相关性分析

在概率论和统计学中,相关(Correlation,或称相关系数或关联系数),显示两个随机变量之间线性关系的强度和方向。在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离。在这个广义的定义下,有许多根据数据特点而定义的用来衡量数据相关的系数。 对于不同测量尺度的变数,有不同的相关系数可用: Pearson相关系数(Pearson’s r):衡量两个等距尺度或等比尺度变数之相关性。是最常见的...
阅读(132) 评论(0)

中心极限定理

中心极限定理是概率论中的一组定理。中心极限定理说明,大量相互独立的随机变量,其均值的分布以正态分布为极限。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从正态分布的条件。 中心极限定理有着有趣的历史。这个定理的第一版被法国数学家棣莫弗发现,他在1733年发表的卓越论文中使用正态分布去估计大量抛掷硬币出现正面次数的分布。这个超越时代的成果险些被历史遗忘,所幸著名法国数学家拉普拉...
阅读(112) 评论(0)

正态分布

神说,要有正态分布,就有了正态分布。 神看正态分布是好的,就让随机误差服从了正态分布。 关于正态分布的由来,推荐文章正态分布的前世今生。下面是几个R语言的小demo。 二项分布的正态近似 set.seed(234) x=rbinom(10000,100,0.6) x=matrix(x,nc=4) m=apply(x,1,mean) summary(m) var(m) sd(m) hist(m,...
阅读(148) 评论(1)
198条 共14页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:209221次
    • 积分:3955
    • 等级:
    • 排名:第8834名
    • 原创:197篇
    • 转载:1篇
    • 译文:0篇
    • 评论:36条
    博客专栏
    最新评论