# CODE 70: Unique Paths II

937人阅读 评论(0)

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

public int uniquePathsWithObstacles(int[][] obstacleGrid) {
// Note: The Solution object is instantiated only once and is reused by
// each test case.
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] sum = new int[m][n];
sum[0][0] = obstacleGrid[0][0] == 1 ? 0 : 1;
for (int i = 1; i < m; i++) {
if (obstacleGrid[i][0] == 1) {
sum[i][0] = 0;
} else {
sum[i][0] = sum[i - 1][0];
}
}
for (int i = 1; i < n; i++) {
if (obstacleGrid[0][i] == 1) {
sum[0][i] = 0;
} else {
sum[0][i] = sum[0][i - 1];
}
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] != 1) {
sum[i][j] = sum[i - 1][j] + sum[i][j - 1];
} else {
sum[i][j] = 0;
}

}
}
return sum[m - 1][n - 1];
}

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：99478次
• 积分：2706
• 等级：
• 排名：第13836名
• 原创：178篇
• 转载：21篇
• 译文：0篇
• 评论：9条
文章分类
阅读排行
评论排行
最新评论