关闭

CODE 70: Unique Paths II

937人阅读 评论(0) 收藏 举报
分类:

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

	public int uniquePathsWithObstacles(int[][] obstacleGrid) {
		// Note: The Solution object is instantiated only once and is reused by
		// each test case.
		int m = obstacleGrid.length;
		int n = obstacleGrid[0].length;
		int[][] sum = new int[m][n];
		sum[0][0] = obstacleGrid[0][0] == 1 ? 0 : 1;
		for (int i = 1; i < m; i++) {
			if (obstacleGrid[i][0] == 1) {
				sum[i][0] = 0;
			} else {
				sum[i][0] = sum[i - 1][0];
			}
		}
		for (int i = 1; i < n; i++) {
			if (obstacleGrid[0][i] == 1) {
				sum[0][i] = 0;
			} else {
				sum[0][i] = sum[0][i - 1];
			}
		}
		for (int i = 1; i < m; i++) {
			for (int j = 1; j < n; j++) {
				if (obstacleGrid[i][j] != 1) {
					sum[i][j] = sum[i - 1][j] + sum[i][j - 1];
				} else {
					sum[i][j] = 0;
				}

			}
		}
		return sum[m - 1][n - 1];
	}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:99478次
    • 积分:2706
    • 等级:
    • 排名:第13836名
    • 原创:178篇
    • 转载:21篇
    • 译文:0篇
    • 评论:9条
    文章分类
    最新评论