bp网络算法对y=0.4sin(2*PI*x)+0.5的拟合

原创 2004年03月15日 09:16:00
B-P算法对函数y=0.4sin(2*PI*x)+0.5的拟合



#include

#include

#include

#define M 8 //隐节点个数

#define N 20 //学习样本个数

#define PI 3.14159

//////////////////////////////////////////////////////////

static float x[N]; //x输入

static float y[N]; //y输出

static float t[N]; //t教师

static float h[M][N]; // 记录隐单元的输出

static float b[N]; //输出误差

static float b1[M][N]; //记录隐单元误差

float w1[M]={0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8}; //输入与第一隐层的权

float w2[M]={0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1}; //第一隐层与输出层的权

float q[M]={0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8}; //第一隐层的阈值

float p=0.3; //输出层的阈值

float r=0.2; //步长

int n=0; //记录训练次数

//////////////////////////////////////////////////////////////////////////

float f(float u)

{

return 1/(1+exp(-u));

}

///////////////////////////////////////////////////////////////////////////

//赋值函数

void fuzhi(void)

{

int k;

for(k=0;k x[k]=(float)k/20; // 输入值

for(k=0;k {

t[k]=0.4*sin(2*PI*x[k])+0.5; //计算教师的值

cout<<"x["< }

}

////////////////////////////////////////////////////////////

//计算隐单元输出,输出单元

void jisuan(void)

{

int i,j;

static float a[N]; //存放中间结果

for( i=0;i for( j=0;j h[i][j]=f(w1[i]*x[j]-q[i]); //计算隐单元输出

for(j=0;j {

a[j]=0; //注意初值

for(i=0;i a[j]+=w2[i]*h[i][j];

y[j]=f(a[j]-p);

}



///////////////////////////////////////////////////////////

//计算误差

void wucha(void)

{

int i,j;

for( j=0;j b[j]=y[j]*(1-y[j])*(t[j]-y[j]); //输出

for( i=0;i for(j=0;j b1[i][j]=b[j]*w2[i]*h[i][j]*(1-h[i][j]);//隐单元

}

//////////////////////////////////////////////////////////////

//权的修改

void xiugai(void)

{

float c,d; //临时变量

int i,j;

for( i=0;i {

c=0;

for( j=0;j c+=b[j]*h[i][j];

w2[i]+=r*c;

}

c=0;

for(j=0;j c+=b[j]*(-1);

p+=c*r;

for(i=0;i {

c=0;

d=0;

for(j=0;j {

c+=b1[i][j]*x[j];

d+=b1[i][j]*(-1);

}

w1[i]+=r*c;

q[i]+=r*d;

}

}

////////////////////////////////////////////////////////////

//计算输出的总误差

float shuchu(void)

{

float E=0;

for(int j=0;j E+=(t[j]-y[j])*(t[j]-y[j]);

return E;

}

///////////////////////////////////////////////////////////

//主函数

void main()

{

char s;

float Ez;

fuzhi();

do{ ++n;

jisuan();

wucha();

xiugai();

Ez=shuchu();cout< } while(Ez/2>0.01);

// for(int j=0;j // cout<<"y["< cin>>s;

}

//////////////////////////////////////////////////////////

改进型的BP神经网络拟合函数y=sin(x)

  • 2017年07月31日 23:06
  • 359KB
  • 下载

BP神经网络非线性函数拟合应用

%% BP神经网络的输入输出数据 % clear all % clc % x=rand(1,1500); % y=rand(1,1500); % p=[x;y]'; % z=x.^2-y.^2+3; ...
  • fanpengfei0
  • fanpengfei0
  • 2015年06月11日 16:34
  • 1233

拟合sin函数的bp算法

  • 2015年05月20日 10:58
  • 2KB
  • 下载

BP原理与实现

上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能。由这些人工神经元构建出来的网络,才能够具有学习、联想、记忆和模式识别的能力。BP网络就是一种简单的人工神经...
  • yiyisunshine
  • yiyisunshine
  • 2016年11月22日 11:47
  • 2075

BP神经网络函数拟合

%% 该代码为基于BP网络的语言识别 %% 清空环境变量 clc clear %% 训练数据预测数据提取及归一化 pd=2; %下载四类语音信号 input=[-2:0....
  • u011255824
  • u011255824
  • 2014年07月21日 15:00
  • 1868

BP神经网络函数拟合

%% 该代码为基于BP网络的语言识别 %% 清空环境变量 clc clear %% 训练数据预测数据提取及归一化 pd=2; %下载四类语音信号 input=[-2:0....
  • u011255824
  • u011255824
  • 2014年07月21日 15:00
  • 1868

sin函数查表

  • 2013年05月07日 21:55
  • 36KB
  • 下载

利用神经网络逼近sin(x)函数

参考书目:智能控制技术(第二版) 对于逼近正弦函数很多讲神经网络的书中都有涉及,算是比较简单的一个例子。对于这个网络来说,输入只有一个,那就是采样点(或者说时间点),输出显然只有一个,也就是一个与s...
  • Hey_chaoxia
  • Hey_chaoxia
  • 2018年01月11日 16:09
  • 16

BP神经网络非线性函数拟合应用

%% BP神经网络的输入输出数据 % clear all % clc % x=rand(1,1500); % y=rand(1,1500); % p=[x;y]'; % z=x.^2-y.^2+3; ...
  • fanpengfei0
  • fanpengfei0
  • 2015年06月11日 16:34
  • 1233

BP神经网络中的过拟合现象

毕设:基于BP神经网络的网络病毒预测模型 过拟合
  • github_33934628
  • github_33934628
  • 2016年04月19日 21:28
  • 4100
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:bp网络算法对y=0.4sin(2*PI*x)+0.5的拟合
举报原因:
原因补充:

(最多只允许输入30个字)