康托展开

原创 2016年05月31日 14:12:45

【关于】
康拓展开介绍

【代码实现】

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int MAXN = 1e5 + 3;

const int fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880};

int Hash(int *s, int n)
{
    int i, j, num;
    num = 0;
    for(i=0; i<n; ++i)//对于序列中的每一位
    {
        int cnt = 0;
        for(j=i+1; j<n; ++j)//计算比该位小的字符
        {
            if(s[j]<s[i])
                cnt++;
        }
        num += cnt * fac[n-i-1];
    }
    return num;
}


void get_node(int num, int *s, int n)
{
    int* a = (int*)malloc(n*sizeof(int));
    for(int i=2; i<=n; ++i)
    {
        a[i-1] = num%i;
        num /= i;
        s[i-1] = 0;
    }

    s[0] = 0;
    int rn, i;
    for(int k=n; k>=2; --k)
    {
        rn = 0;
        for(i=n-1; i>=0; --i)
        {
            if(s[i]!=0)
                continue;
            if(rn==a[k-1])
                break;
            ++rn;
        }
        s[i] = k;
    }
    for(i=0; i<n; ++i)
    {
        if(s[i]==0)
        {
            s[i] = 1;
            break;
        }
    }
}


int main()
{
    int a[4] = {1, 2, 3, 4};
    int index = Hash(a, 4);

    cout << index << endl;

    int n = 4;
    int* rlt = (int*)malloc(n*sizeof(int));

    get_node(index, rlt, n);

    for(int i=0; i<n; ++i)
        cout << rlt[i];

    cout << endl;
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

算法:康托展开式——实现全排列序列与序号的映射

康托展开式实现了由1到n组成的全排列序列到其编号之间的一种映射,下面会给出例子,虽然这个公式应用不是很多,但这种思想值得学习,首先给出其公式: X=an*(n-1)!+an-1*(n-2)!+...+...

hdu 1043 /poj 1077 Eight(经典八数码问题,BFS+康托展开)

Eight Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S...
  • acm_cxq
  • acm_cxq
  • 2016年08月05日 21:58
  • 340

hdu 1034 & poj 1077 Eight 传说中的八数码问题。真是一道神题,A*算法+康托展开

Problem Description The 15-puzzle has been around for over 100 years; even if you don't know it by t...

POJ 1077 Eight 八数码问题[康托展开 + BFS]

POJ 1077 Eight 八数码问题 [康托展开 + BFS] 题目链接:Here! 对于八数码问题,可能问题的关键不是BFS,而是对状态的标记。八数码的状态恰好是一个全排列,那么对于全排列,...

hdu1043Eight (经典的八数码)(康托展开+BFS)

建议先学会用康托展开: Problem Description The 15-puzzle has been around for over 100 years; even if you don'...

HDU 1043 双向广搜 八数码 康托展开 逆序数

#include #include #include #include using namespace std; char c; int index[10] = {1,1,2,6,24,120,720...

筛选法求素数和康托展开

筛选法求素数:不说直接上代码: #include #include #include #include #define MAXN 10000005 bool p[MAXN]; int mai...

逆康托展开

简单介绍下:这个方法还是用例子来说比较好例1 {1,2,3,4,5}的全排列,并且已经从小到大排序完毕(1)找出第96个数首先用96-1得到95用95去除4! 得到3余23用23去除3! 得到3余5用...

康托展开 双向广搜

康托展开:         公式:X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[2]*1!+a[1]*0!;       利用这个公式,我们可以求...

USACO msquare (BFS+康托展开)

BFS + 康托展开
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:康托展开
举报原因:
原因补充:

(最多只允许输入30个字)