[转载] 约瑟夫问题的数学方法(O(n))

转载 2007年09月17日 19:51:00
[转载] 约瑟夫问题的数学方法(O(n))
tashj @ 2006-07-19 22:12

发信人: goodhorsezxj (Eyes of Moon), 信区: ACM
 : zz)[转载] 约瑟夫问题的数学方法(O(n))
发信站: 天大求实BBS (Tue Jun 13 17:19:13 2006), 本站(bbs.tju.edu.cn)

发信人: kelefe (混沌中立), 信区: ACMICPC
 : 【合集】[转载] 约瑟夫问题的数学方法(O(n))
发信站: 逸仙时空 Yat-sen Channel (Tue Jun  6 16:40:57 2006), 站内信件

──── yanjunwei (Sat Jun  3 21:22:00 2006)   ───────────

以下文字转载自 yanjunwei 的信箱
原文由 yanjunwei 所发表

约瑟夫问题的数学方法
[ 2006-5-5 14:26:00 | By: lower ]
 
看到这个想起了去年的省赛上,我们就是被一个约瑟夫问题的变种搞的几乎发狂了,一直是WA,出了赛场才发现并
不是真正的约瑟夫问题。

对于约瑟夫问题,今天看到了一篇好帖子,是用数学方法处理的,感觉还不错的

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂
度高达O(nm),当nm非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。

为了讨论方便,先把问题稍微改变一下,并不影响原意:

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号


我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开
始):
  k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2
并且从k开始报0

现在我们把他们的编号做一下转换:
k     --> 0
k+1   --> 1
k+2   --> 2
...
...
k-2   --> n-2
k-1   --> n-1

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根
据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'
=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)
情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,
我们输出f[n]+1

由于是逐级递推,不需要保存每个f[i],程序也是异常简单:

include <stdio.h>

main()
{
  int n, m, i, s=0;
  printf ("N M = "); scanf("%d%d", &n, &m);
  for (i=2; i<=n; i++) s=(s+m)%i;
  printf ("The winner is %d/n", s+1);
}

这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算nm等于一百万,一千万的情况不是问题
了。
 

约瑟夫问题的数学方法

1.问题描述:n个人(编号1~n),从1开始报数,报到m的退出,剩下的人继续从1开始报数。按顺序输出列者编号。数学解法复杂度:O(n)。   下面的代码摘自雨中飞燕博客,这个公式推的太牛了,我还没...
  • qq_14985223
  • qq_14985223
  • 2014年09月15日 21:30
  • 554

约瑟夫问题,从o(n*m)到o(n)乃至o(m)的算法复杂度进阶

约瑟夫问题,从o(n*m)到o(n)乃至o(m)的算法复杂度进阶
  • ZHOUBEISI
  • ZHOUBEISI
  • 2016年08月25日 15:00
  • 753

约瑟夫问题各种求解方式

第一种就是很简单的公式运用,网上的代码,不能够证明和理解,所以当做模板用吧 #include int main() { int n,i=0,m,p; scanf("%d%d"...
  • Summer__show_
  • Summer__show_
  • 2016年03月06日 20:49
  • 516

约瑟夫环(数学高效率解法,很详细)

 5.5.4 用数学方法解约瑟夫环(1) 原文copy:http://book.51cto.com/art/201403/433941.htm 5.5.4  用数学方法解约瑟夫环(1...
  • qq_25973267
  • qq_25973267
  • 2015年12月25日 22:49
  • 4664

约瑟夫环问题的数学解法

问题描述:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围...
  • allenhappy
  • allenhappy
  • 2014年05月23日 17:30
  • 1416

数据结构—约瑟夫问题

约瑟夫问题: 约瑟夫问题是个有名的问题:N个人围成一圈,从第一个开始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉。例如N=6,M=5,被杀掉的顺序是:5,4,6,2,3,1。 分析: ...
  • LY_624
  • LY_624
  • 2016年04月23日 14:44
  • 1222

算法题-约瑟夫(Joseph)问题求解

题:编写一个程序,求解约瑟夫(Joseph)问题。有n个小孩围城一圈,将他们从1开始依次编号,从编号为1的小孩开始报数,数到第m个小孩出列,然后从出列的下一个小孩重新开始报数,数到第m个小孩有出列,如...
  • liuxiao2030
  • liuxiao2030
  • 2017年01月05日 10:32
  • 884

约瑟夫环问题的一种描述

#include"stdio.h" #include"malloc.h" //1.元素类型,结点类型和指针类型 typedef struct LNode         //定义结构体, { ...
  • ICEUnc1e
  • ICEUnc1e
  • 2014年09月11日 15:23
  • 1040

约瑟夫环问题

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2211 题意:N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人重新从...
  • ACdreamers
  • ACdreamers
  • 2013年12月30日 19:33
  • 2545

约瑟夫问题——算法优化

在华为的OJ自学平台上有个约瑟夫问题,不过它不是原来意义上的约瑟夫问题,而是其变体,做了这个题之后,有一点关于算法优化的小想法,因此想写下来。 问题的描述如下:  功能: 约瑟夫问题众所周知,...
  • leijf1239848066
  • leijf1239848066
  • 2014年03月30日 14:17
  • 1764
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[转载] 约瑟夫问题的数学方法(O(n))
举报原因:
原因补充:

(最多只允许输入30个字)