[转载] 约瑟夫问题的数学方法(O(n))

转载 2007年09月17日 19:51:00
[转载] 约瑟夫问题的数学方法(O(n))
tashj @ 2006-07-19 22:12

发信人: goodhorsezxj (Eyes of Moon), 信区: ACM
 : zz)[转载] 约瑟夫问题的数学方法(O(n))
发信站: 天大求实BBS (Tue Jun 13 17:19:13 2006), 本站(bbs.tju.edu.cn)

发信人: kelefe (混沌中立), 信区: ACMICPC
 : 【合集】[转载] 约瑟夫问题的数学方法(O(n))
发信站: 逸仙时空 Yat-sen Channel (Tue Jun  6 16:40:57 2006), 站内信件

──── yanjunwei (Sat Jun  3 21:22:00 2006)   ───────────

以下文字转载自 yanjunwei 的信箱
原文由 yanjunwei 所发表

约瑟夫问题的数学方法
[ 2006-5-5 14:26:00 | By: lower ]
 
看到这个想起了去年的省赛上,我们就是被一个约瑟夫问题的变种搞的几乎发狂了,一直是WA,出了赛场才发现并
不是真正的约瑟夫问题。

对于约瑟夫问题,今天看到了一篇好帖子,是用数学方法处理的,感觉还不错的

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂
度高达O(nm),当nm非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。

为了讨论方便,先把问题稍微改变一下,并不影响原意:

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号


我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开
始):
  k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2
并且从k开始报0

现在我们把他们的编号做一下转换:
k     --> 0
k+1   --> 1
k+2   --> 2
...
...
k-2   --> n-2
k-1   --> n-1

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根
据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'
=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)
情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,
我们输出f[n]+1

由于是逐级递推,不需要保存每个f[i],程序也是异常简单:

include <stdio.h>

main()
{
  int n, m, i, s=0;
  printf ("N M = "); scanf("%d%d", &n, &m);
  for (i=2; i<=n; i++) s=(s+m)%i;
  printf ("The winner is %d/n", s+1);
}

这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算nm等于一百万,一千万的情况不是问题
了。
 

相关文章推荐

Josephus(约瑟夫)环问题的数学方法,使用递推公式。

Josephus(约瑟夫)环问题的数学方法,使用递推公式。

约瑟夫问题的数学方法

N个人围成一圈,顺序排号,从从第一个人开始报数,从1到3,凡报道3的退出圈子,问最后留下的第几号的那位?/*约瑟夫问题的数学方法无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程...

百练-2746-OpenJudge(约瑟夫问题分析二,数学方法)

#include #include int main() {    int n, m, i,s;    while(scanf("%d%d",&n,&m)&&(n||m)) ...

UVa 3882 And Then There Was One(stl+有技巧的模拟||数学方法+约瑟夫问题)

Let’s play a stone removing game. Initially, n stones are arranged on a circle and numbered 1, …, n ...

约瑟夫环的数学方法

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们...

约瑟夫问题-O(n)算法实现

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们...

约瑟夫问题o(n)算法

声明:本文仅为个人查阅方便所转,版权为原文作者 本算法仅适用于找出最后的胜利者,而不是得到出列序列。 此方法从考虑n-1个人中最终胜利者(最后一个没有出列的人是谁),递推到n个人时最终胜利...

约瑟夫环问题数学优化方法

经典数学优化问题

用数学方法解约瑟夫环

问题:将编号为0~(N–1)这N个人进行圆形排列,按顺时针从0开始报数,报到M–1的人退出圆形队列,剩下的人继续从0开始报数,不断重复。求最后出列者最初在圆形队列中的编号。下面首先列出0~(N–1)这...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)