Go无缓冲通道的陷阱

原创 2017年08月26日 21:07:54

定义

Channel是go的特色之一,甚至说是最大的特色也不为过,使用起来也非常简单。
首先定义一个int类型的channel:

ch1 := make(chan int) // 无缓冲通道
ch2 := make(chan int, 10) // 带缓冲的通道

我们这里主要关注无缓冲通道。

场景

来看看这段代码:

package main

import (
    "sync"
    "fmt"
)

func main() {
    wg := sync.WaitGroup{}

    ch1 := make(chan int)

    wg.Add(1)

    for i := 0; i < 10; i++ {
        ch1 <- i
    }

    go func1(ch1, &wg) 

    wg.Wait()

    close(ch1)
    fmt.Println("Close channel: ", ch1)
}

func func1(ch chan int, wg *sync.WaitGroup) {
    FOR:
    for {
        select {
        case i, ok := <- ch:
            if !ok {
                fmt.Println("1 chan closed, returning")
                break FOR
            } else {
                fmt.Println("1 Got number: ", i)
                if i == 9 {
                    break FOR
                }
            }
        default:
            fmt.Println("1 Got nothing")
        }
    }
    wg.Done()
}

乍眼一看似乎没毛病,但是当运行程序的时候:

fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan send]:
main.main()
    /Users/bruce/Code/go/src/GoCommonServices/sync-demo/demo.go:19 +0xb9
exit status 2

Process finished with exit code 1

为什么呢? 仔细看了看上面的程序,在定义了无缓冲通道ch1之后,立马向其中写入数据:

    ch1 := make(chan int)

    for i := 0; i < 10; i++ {
        ch1 <- i
    }

但此时并没有消费者,而无缓冲通道在写入一个数据之后,会等待消费者消费,程序阻塞,但启动消费者的代码:

    go func1(ch1, &wg) 

恰好在for循环之后,所以这个goroutine永远没有启动的机会,这就是报错信息提示的,deadlock了,要修复这个有两种方法:

1 ch1定义为缓冲通道,足够容纳for中的数据,就不会阻塞
    ch1 := make(chan int 10)
2 先启动消费者,再向通道中写数据
    go func1(ch1, &wg) // 先启动消费者,再向ch1中写入数据,以防阻塞

    ch1 := make(chan int)

    for i := 0; i < 10; i++ {
        ch1 <- i
    }

小结

归根结底,还是因为channel的特性:

无缓冲的channel,不管是入还是出,都会阻塞,所以在同一个goroutine中,不能同时对同一个无缓冲channel进行入和出操作;
带缓冲的channel,在队列满之前,不会阻塞;队列满之后,依然会阻塞。

channel无疑是go并发程序开发的利器,但使用的时候还是需要仔细慎重,注意避免像本文提到的这些『陷阱』。

版权声明:转载请署名 欢迎联系博主 举报

相关文章推荐

如何避开 Go 中的各种陷阱

Go 语言有一些我们常说的「坑」,有不少优秀的文章讨论过这些「坑」。这些文章所讨论的东西非常重要,尤其对 Go 的初学者来说,一不小心就掉进了这些「坑」里。

Go for的三重陷阱

说明这篇for的三重陷阱取自我的另一篇博文Go学习笔记。为了方便快速的查找,将其复制了过来。for陷阱之循环变量 在使用匿名函数时,须特别注意在for词块中引入的循环变量。如果在匿名函数里保存了这个变...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)