吴恩达深度学习笔记(四)week2深度卷积神经网络实例

本文介绍了经典神经网络模型,包括LeNet-5、AlexNet、VGG-16和残差网络(ResNets)。探讨了这些网络的特点及其如何解决深层网络中的梯度问题。此外还讨论了1×1卷积在减少通道数方面的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


吴恩达:通过学习经典网络对自己将来构建神经网络有启发性作用。


经典网络

  • LetNet-5:主要特点是通道数增加,卷积核的尺寸下降,处理的是灰度图片。
    这里写图片描述

  • AlexNet:结构和LetNet-5相似,但是网络要大很多,处理的是彩色图片。
    这里写图片描述

  • VGG-16:卷积核和通道数都以一定规律变化,连接也不是卷积-池化-卷积的结构。
    这里写图片描述

残差网络(Residual Networks,ResNets)

网络很深时易出现梯度下降和梯度消失,残差网络能有效的避免这个问题,残差网络就是跨层连接,构成残差块(Residual blocks)此时某些层的输入会加入跨层连接的神经元的输出,如下图所示。
这里写图片描述
理论上随着网络层数的增加,误差就会减少,但是实际上并不是这样,残差网络通常能到达理论上的效果。
这里写图片描述
为什么残差网络能比普通的网络表现好?如下图所示,当给原网络添加了两层,并添加了残差块时,新的网络输出为:

a[l+2]=g(z[l+2]+a[l])=g(W[l+2]a[l+1]+b[l+2]+a[l])a[l+2]=g(z[l+2]+a[l])=g(W[l+2]a[l+1]+b[l+2]+a[l])
注意到若使用了L2正则化,则会对W[l+2],b[l+2]W[l+2],b[l+2] 压缩,一个极端的情况,若W[l+2],b[l+2]W[l+2],b[l+2] 都为00则新的输出便为g(a[l])即为a[l]a[l](因为此时的激活函数为ReLU),若增加的两层学得了一些新的特征则新网络要比原网络表现得更好(非严格证明,启发式理解)
这里写图片描述

网络中的网络及1×11×1卷积

1×11×1的卷积核能减少通道数,如下图所示:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值