# Functional MRI (second edition) -- 4. Basic Principles of MR Image Formation

171人阅读 评论(0)

Bloch Equation
dM⃗ dt=γM⃗ ×B⃗ +1T1(M0Mz)1T2(Mx+My)$\frac{d\vec{M}}{dt}=\gamma \vec{M} \times \vec{B}+\frac{1}{T_{1}}(\vec{M_{0}}-\vec{M_{z}})-\frac{1}{T_{2}}(\vec{M_{x}}+\vec{M_{y}})$————————–1

dMxdt=MyγBMxT2$\frac{dM_{x}}{dt}=M_{y}\gamma B-\frac{M_{x}}{T_{2}}$————–2
dMydt=MxγBMyT2$\frac{dM_{y}}{dt}=-M_{x}\gamma B-\frac{M_{y}}{T_{2}}$————–3
dMzdt=(MzM0)T1$\frac{dM_{z}}{dt}=-\frac{(M_{z}-M_{0})}{T_{1}}$—————-4

Mz=M0(1et/T1)$M_{z}=M_{0}(1-e^{-t/T_{1}})$———————5

Mx=(Mx0cosωt+My0sinωt)et/T2$M_{x}=(M_{x0}cos\omega t+M_{y0}sin\omega t)e^{-t/T_{2}}$—————6
My=(Mx0sinωt+My0cosωt)et/T2$M_{y}=(-M_{x0}sin\omega t+M_{y0}cos\omega t)e^{-t/T_{2}}$——————7

Mxy=Mx+iMy=(Mx0+iMy0)et/T2(cosωtisinωt)=Mxy0et/T2eiωt$M_{xy}=M_{x}+iM_{y}=(M_{x0}+iM_{y0})e^{-t/T_{2}}(cos\omega t-isin\omega t)=M_{xy0}e^{-t/T_{2}}e^{-i\omega t}$——————8

B(τ)=B0+Gx(τ)x+Gy(τ)y+Gz(τ)z$B(\tau)=B_{0}+G_{x}(\tau)x+G_{y}(\tau)y+G_{z}(\tau)z$————–9

Mxy(x,y,z,t)=Mxy0(x,y,z)et/T2eiγB0teiγt0(Gx(τ)x+Gy(τ)y+Gz(τ)z)dτ$M_{xy}(x,y,z,t)=M_{xy0}(x,y,z)e^{-t/T_{2}}e^{-i\gamma B_{0}t}e^{-i\gamma \int_{0}^{t}(G_{x}(\tau)x+G_{y}(\tau)y+G_{z}(\tau)z)d\tau}$

S(t)=xyzMxy(x,y,z,t)dxdydz$S(t)=\int_{x}\int_{y}\int_{z}M_{xy}(x,y,z,t)dxdydz$
————————————————————————————————————-

Slice Selection
ω+Δω/2=γGz(z+Δz/2)$\omega +- \Delta \omega/2=\gamma G_{z}(z+-\Delta z/2)$

M(x,y)=z0+Δz2z0Δz2Mxy0(x,y,z)dz$M(x,y)=\int_{z_{0}-\frac{\Delta z}{2}}^{z_{0}+\frac{\Delta z}{2}}M_{xy0}(x,y,z)dz$

S(t)=xyM(x,y)eiγt0(Gx(τ)x+Gy(τ)y)dτ$S(t)=\int_{x}\int_{y}M(x,y)e^{-i\gamma \int_{0}^{t}(G_{x}(\tau)x+G_{y}(\tau )y)d\tau}$

———————————————————————————————-
k-space

kx(t)=γ2πt0Gx(τ)dτ$k_{x}(t)=\frac{\gamma}{2\pi}\int_{0}^{t}G_{x}(\tau)d\tau$
ky(t)=γ2πt0Gy(τ)dτ$k_{y}(t)=\frac{\gamma}{2\pi}\int_{0}^{t}G_{y}(\tau)d\tau$

S(t)=xyM(x,y)ei2πkx(t)xei2πky(t)ydxdy$S(t)=\int_{x}\int_{y}M(x,y)e^{-i2\pi k_{x}(t)x}e^{-i2\pi k_{y}(t)y}dxdy$

Field of view:
FOVx=1Δkx=$FOV_{x}=\frac{1}{\Delta k_{x}}=$sampling rate along kx=1γ2π(GxΔt)$k_{x}=\frac{1}{\frac{\gamma}{2\pi}(G_{x}\Delta t)}$
FOVy=1Δky=$FOV_{y}=\frac{1}{\Delta k_{y}}=$sampling rate along ky=1γ2π(GyΔt)$k_{y}=\frac{1}{\frac{\gamma}{2\pi}(G_{y}\Delta t)}$

voxel size:
FOVxMx=1MxΔkx=12kxmax$\frac{FOV_{x}}{M_{x}}=\frac{1}{M_{x}\Delta k_{x}}=\frac{1}{2k_{xmax}}$
FOVyMy=1MyΔky=12kymax$\frac{FOV_{y}}{M_{y}}=\frac{1}{M_{y}\Delta k_{y}}=\frac{1}{2k_{ymax}}$

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：15873次
• 积分：1241
• 等级：
• 排名：千里之外
• 原创：50篇
• 转载：6篇
• 译文：1篇
• 评论：1条
文章分类
阅读排行
评论排行
最新评论