关闭

bzoj 2034: [2009国家集训队]最大收益 贪心优化特殊图最优匹配

标签: 贪心最优匹配离散化
997人阅读 评论(0) 收藏 举报
分类:

       显然这是一个非常明显的最优匹配模型,但是由于N<=5000,所以最优匹配是会T的。。

       考虑贪心,我们把所有的任务按收益从大到小排序,然后按顺序能加入就加入,易证这样是最优的。

       注意到题目中时刻的范围非常大,但是注意到实际上有用的点只有O(N)个,算法是:一开始所有点是黑点,然后对某个任务,找到它起始时间之后的第一个黑点染成白色;对所有点做一次之后的白点就是有用点。

       因此问题变为判断某些任务能否全部完成;实际上就是按结束时间从小到大能加入就加入,时间复杂度O(N)。因此总复杂度O(N^2)。

AC代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 5005
using namespace std;

int n,blg[N],pos[N]; struct node{ int x,y,z,s; }a[N];
bool cmpx(const node &u,const node &v){ return u.x<v.x; }
bool cmpz(const node &u,const node &v){ return u.z>v.z; }
bool check(int k,int x){
	if (pos[x]>a[k].y) return 0;
	if (!blg[x]){
		blg[x]=k; return 1;
	}else
		if (a[blg[x]].y<a[k].y) return check(k,x+1);
		else if (check(blg[x],x+1)){
			blg[x]=k; return 1;
		} else return 0;
}
int main(){
	scanf("%d",&n); int i;
	for (i=1; i<=n; i++) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
	sort(a+1,a+n+1,cmpx);
	for (i=1; i<=n; i++) pos[i]=max(pos[i-1]+1,a[i].x);
	for (i=2,a[1].s=1; i<=n; i++){
		a[i].s=a[i-1].s;
		while (pos[a[i].s]<a[i].x && a[i].s<n) a[i].s++;
	}
	sort(a+1,a+n+1,cmpz);
	long long ans=0;
	for (i=1; i<=n; i++) if (check(i,a[i].s)) ans+=a[i].z;
	printf("%lld\n",ans);
	return 0;
}


by lych

2016.6.2

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:215211次
    • 积分:6133
    • 等级:
    • 排名:第4058名
    • 原创:400篇
    • 转载:0篇
    • 译文:0篇
    • 评论:90条
    文章分类
    最新评论