NYOJ 1075 (递推 + 矩阵快速幂)

原创 2014年09月29日 08:03:13

“红色病毒”问题

时间限制:1000 ms  |  内存限制:65535 KB
难度:4
描述
医学研究者最近发现了一种新病毒,因为其蔓延速度与曾经在Internet上传播的“红色代码”不相上下,故被称为“红色病毒”。
经研究发现,该病毒及其变种的DNA序列中,腺嘌呤(A)、胞嘧啶(C)均是成对出现的。LYH想知道在这种特征下,所有可能成为该病毒的DNA序列的个数。
输入
多组测试数据。
每组数据输入一个整数n,表示该病毒DNA序列的长度。(1≤n≤10^9)
n=0时表示输入结束,不用做任何处理。
输出
每组输出占一行,代表该病毒长度为n的所有可能的DNA序列个数。由于结果可能非常大,你只需输出对10007取余后的结果即可。
样例输入
1
2
样例输出
2
6
提示
DNA序列仅由腺嘌呤(A),鸟嘌呤(G),胞嘧啶(C),胸腺嘧啶(T)四种核苷酸组成。
当n=2时,所有可能的DNA序列为TT、TG、GT、GG、AA、CC。


分析:因为题目要求A和C要成对出现,即A和C的数量都是偶数,所以可以定义4个状态:
dp[n][0]表示长度为n时A的数量为偶数,C的数量也为偶数,
dp[n][1]表示长度为n时A的数量为偶数,C的数量为奇数,
dp[n][2]表示长度为n时A的数量为奇数,C的数量为偶数,
dp[n][3]表示长度为n时A的数量为奇数,C的数量也为奇数的DNA序列的数量,
dp[n][0] = dp[n-1][0] * 2 + dp[n-1][1] * 1 + dp[n-1][2] * 1 + dp[n-1][3] * 0
dp[n][1] = dp[n-1][0] * 1 + dp[n-1][1] * 2 + dp[n-1][2] * 0 + dp[n-1][3] * 1
dp[n][2] = dp[n-1][0] * 1 + dp[n-1][1] * 0 + dp[n-1][2] * 2 + dp[n-1][3] * 1
dp[n][3] = dp[n-1][0] * 0 + dp[n-1][1] * 1 + dp[n-1][2] * 1 + dp[n-1][3] * 2
根据这个递推关系,可以构造出如下一个4*4的矩阵,
| 2    1    1   0 |
| 1    2    0   1 |
| 1    0    2   1 |
| 0    1    1   2 |
然后利用矩阵快速幂就可以快速求出答案。

#include<cstdio>
#include<cstring>

#define mod 10007

struct Matrix {
    int mat[4][4];
    Matrix() {
        memset(mat, 0, sizeof(mat));
        for(int i = 0; i < 4; i++)
            mat[i][i] = 1;
    }
};

Matrix Multi(Matrix a, Matrix b) {
    Matrix res;
    for(int i = 0; i < 4; i++) {
        for(int j = 0; j < 4; j++) {
            res.mat[i][j] = 0;
            for(int k = 0; k < 4; k++) {
                res.mat[i][j] += a.mat[i][k] * b.mat[k][j];
                res.mat[i][j] %= mod;
            }
        }
    }
    return res;
}

Matrix Pow(Matrix a, int x) {
    Matrix res;
    while(x) {
        if(x&1) res = Multi(res, a);
        a = Multi(a, a);
        x >>= 1;
    }
    return res;
}

int main() {
    int T, n;

    Matrix A;  //系数矩阵
    A.mat[0][0] = 2; A.mat[0][1] = 1; A.mat[0][2] = 1; A.mat[0][3] = 0;
    A.mat[1][0] = 1; A.mat[1][1] = 2; A.mat[1][2] = 0; A.mat[1][3] = 1;
    A.mat[2][0] = 1; A.mat[2][1] = 0; A.mat[2][2] = 2; A.mat[2][3] = 1;
    A.mat[3][0] = 0; A.mat[3][1] = 1; A.mat[3][2] = 1; A.mat[3][3] = 2;

    scanf("%d",&T);
    while(T--) {
        scanf("%d", &n);
        Matrix ans = Pow(A, n);
        printf("%d\n", ans.mat[0][0]);
    }

    return 0;
}


相关文章推荐

勾花网机半自动勾花网机,勾花编织网机,丝网机械勾花网机,勾花网机丝网机,勾花网机编织网机,勾花网机铁丝网机,金属网机,半自动勾花网机,丝网机械,丝网设备

勾花网机半自动勾花网机又名(又称活络网),适用于生产多种规格的菱形网,该网广泛使用于国防、矿山、铁路以及高速公路、围栏,作为防护栅栏等。HG-B型菱型网机为半自动操作。本机采用双螺纹旋管、穿网、人工剪...

算法提高 递推求值 (矩阵快速幂)

问题描述   已知递推公式:   F(n, 1)=F(n-1, 2) + 2F(n-3, 1) + 5,   F(n, 2)=F(n-1, 1) + 3F(n-3, 1) + 2F(n-3, 2...

蓝桥杯算法提高——递推求值(矩阵快速幂)

问题描述   已知递推公式:  F(n, 1)=F(n-1, 2) + 2F(n-3, 1) + 5,  F(n, 2)=F(n-1, 1) + 3F(n-3, 1) + 2F(n-3, 2) + ...

NYOJ 301 递推求值(矩阵快速幂)

递推求值 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 给你一个递推公式: f(x)=a*f(x-2)+b*f(x-1)+c 并给你f(1),f(2)的...

NYOJ - 301 - 递推求值 ( 递推+矩阵快速幂 )

描述 给你一个递推公式: f(x)=a*f(x-2)+b*f(x-1)+c 并给你f(1),f(2)的值,请求出f(n)的值,由于f(n)的值可能过大,求出f(n)对1000007取...

HDU 2604 递推 + 矩阵快速幂

HDU 2604 题解:首先, 记长为n的队列的K队列数为f(n); 易求得:f(0) = 0, f(1) = 2, f(2) =  4, f(3) = 6, f(4) =...
  • ADjky
  • ADjky
  • 2016年10月06日 18:37
  • 160

HDU 2604 Queuing (递推+ 矩阵快速幂)

Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total...
  • sizaif
  • sizaif
  • 2017年08月10日 10:30
  • 90

HihoCoder1151 骨牌覆盖问题·二(矩阵快速幂,递推)

题目: 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3...

【POJ 3420】Quad Tiling(dp|递推 +矩阵快速幂)

秋意渐浓,阳光西斜,遍地金黄
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:NYOJ 1075 (递推 + 矩阵快速幂)
举报原因:
原因补充:

(最多只允许输入30个字)