线段树

原创 2015年07月10日 21:33:28

线段树模板啦
维护区间和,最大值,最小值
资瓷区间加值,区间赋值

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int INF = 0x3f3f3f3f;
const int maxn = 105;

int a[maxn];
int add[maxn << 2], col[maxn << 2];
int minv[maxn << 2], maxv[maxn << 2], sum[maxn << 2];

void maintain(int o, int L, int R)
{
    if(L >= R) return ;
    int lc = o << 1, rc = o << 1 | 1;
    sum[o] = sum[lc] + sum[rc];
    maxv[o] = max(maxv[lc], maxv[rc]);
    minv[o] = min(minv[lc], minv[rc]);
}

void pushdown(int o, int L, int R)
{
    if(L >= R) return ;
    int M = (L + R) >> 1, lc = o << 1, rc = o << 1 | 1;
    if(col[o])
    {
        col[lc] = col[rc] = col[o];
        add[lc] = add[rc] = 0;
        sum[lc] = col[o] * (M-L+1);
        sum[rc] = col[o] * (R-M);
        maxv[lc] = maxv[rc] = minv[lc] = minv[rc] = col[o];
        col[o] = 0;
    }
    if(add[o])
    {
        add[lc] += add[o]; add[rc] += add[o];
        sum[lc] += add[o] * (M-L+1); sum[rc] += add[o] * (R-M);
        maxv[lc] += add[o]; maxv[rc] += add[o];
        minv[lc] += add[o]; minv[rc] += add[o];
        add[o] = 0;
    }
}

int op, qv, _sum, _max, _min;

void update(int o, int L, int R, int ql, int qr)
{
    if(L == ql && qr == R)
    {
        if(op == 1)//add
        {
            add[o] += qv;
            maxv[o] += qv;
            minv[o] += qv;
            sum[o] += qv * (R-L+1);
        }
        else//set
        {
            col[o] = maxv[o] = minv[o] = qv;
            add[o] = 0;
            sum[o] = qv * (R-L+1);
        }
    }
    else
    {
        pushdown(o, L, R);
        int M = (L + R) >> 1;
        if(qr <= M) update(o << 1, L, M, ql, qr);
        else if(M < ql) update(o << 1 | 1, M+1, R, ql, qr);
        else
        {
            update(o << 1, L, M, ql, M);
            update(o << 1 | 1, M+1, R, M+1, qr);
        }
        maintain(o, L, R);
    }
}

void query(int o, int L, int R, int ql, int qr)
{
    if(L == ql && qr == R)
    {
        _sum += sum[o];
        _max = max(_max, maxv[o]);
        _min = min(_min, minv[o]);
    }
    else
    {
        pushdown(o, L, R);
        int M = (L + R) >> 1;
        if(qr <= M) query(o << 1, L, M, ql, qr);
        else if(M < ql) query(o << 1 | 1, M+1, R, ql, qr);
        else
        {
            query(o << 1, L, M, ql, M);
            query(o << 1 | 1, M+1, R, M+1, qr);
        }
        maintain(o, L, R);
    }
}

void build(int o, int L, int R)
{
    if(L == R) maxv[o] = minv[o] = sum[o] = a[L];
    else
    {
        int M = (L + R) >> 1;
        build(o << 1, L, M);
        build(o << 1 | 1, M+1, R);
        maintain(o, L, R);
    }
}

int main()
{
    freopen("input.txt","r",stdin);
    freopen("out2.txt","w",stdout);

    int n, q;
    scanf("%d%d", &n, &q);
    for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
    build(1, 1, n);
    while(q--)
    {
        int ql, qr;
        scanf("%d", &op);
        if(op <= 2)
        {
            scanf("%d%d%d", &ql, &qr, &qv);
            update(1, 1, n, ql, qr);
        }
        else
        {
            scanf("%d%d", &ql, &qr);
            _sum = _max = 0; _min = INF;
            query(1, 1, n, ql, qr);
            printf("%d %d %d\n", _min, _max, _sum);
        }
    }

    fclose(stdin);
    fclose(stdout);
    return 0;
}

相关文章推荐

线段树高级数据结构实现

  • 2016年05月26日 13:20
  • 2KB
  • 下载

HDU 1394 线段树

线段树单点更新。 题意: 给你任意N个数字,然后算这个数字序列的逆序数,然后依次把第1个,第2个。。。第N个移动到后面得到一个数字序列,在这些序列里面找到逆序数最小的一个序列,打印出该序列的 逆序...

线段树代码

  • 2014年09月11日 12:03
  • 26KB
  • 下载

竞选海报(线段树加离散化)

  • 2013年05月11日 18:25
  • 2KB
  • 下载

1174 区间中最大的数(线段树)

1174 区间中最大的数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出一个有N个数的序列,编号0 - N - 1。进行Q次查...
  • update7
  • update7
  • 2017年07月14日 08:16
  • 33861

线段树学习步骤

  • 2013年08月09日 20:28
  • 773KB
  • 下载

帮助理解的线段树

  • 2013年07月29日 17:06
  • 166KB
  • 下载

线段树(3)之区间合并(基础题)

提一下,博主的英语四级过了,就是这么6(虽然考了两回)       区间合并:这类题目会询问区间中满足条件的连续最长区间,所以PushUp的时候需要对左右儿子的区间进行合并,因为有可能合并之后连续最长...

线段树小总结

  • 2014年01月02日 16:35
  • 877B
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:线段树
举报原因:
原因补充:

(最多只允许输入30个字)