2017 ACM-ICPC 亚洲区(西安赛区)网络赛 C. Sum

本文介绍了一道算法题目,目标是找到一个正整数k,使得k乘以给定整数x后的数字每位相加等于233的倍数。通过使用大数处理技巧并枚举由1组成的数来解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Define the function S(x)S(x)S(x) for xxx is a positive integer. S(x)S(x)S(x) equals to the sum of all digit of the decimal expression of xxx. Please find a positive integer kkk that S(k∗x)%233=0S(k*x)\%233=0S(kx)%233=0.

Input Format

First line an integer TTT, indicates the number of test cases (T≤100T \le 100T100). Then Each line has a single integer x(1≤x≤1000000)x(1 \le x \le 1000000)x(1x1000000) indicates i-th test case.

Output Format

For each test case, print an integer in a single line indicates the answer. The length of the answer should not exceed 200020002000. If there are more than one answer, output anyone is ok.

样例输入
1
1
样例输出
89999999999999999999999999
题目来源

2017 ACM-ICPC 亚洲区(西安赛区)网络赛


题意:给你一个x,要你求一个正整数k,使得k*x的结果的每一位的和为233的倍数。


解题思路:这题有bug,直接输出0也是对的……但我们不这么做,实际上,k可以只由1组成,然后暴力枚举所有由1组成的数,直到出答案为止。这里要用到大数模板,我就上网百度了一份。感谢某位大神的大数模板……只看main函数就可以了


#include <iostream>  
#include <cstdio>  
#include <cstdlib>  
#include <cstring>  
#include <string>  
#include <algorithm>  
using namespace std;  
  
const int MAXN = 2000;  
  
struct bign  
{  
    int len, s[MAXN];  
    bign ()  
    {  
        memset(s, 0, sizeof(s));  
        len = 1;  
    }  
    bign (int num) { *this = num; }  
    bign (const char *num) { *this = num; }  
    bign operator = (const int num)  
    {  
        char s[MAXN];  
        sprintf(s, "%d", num);  
        *this = s;  
        return *this;  
    }  
    bign operator = (const char *num)  
    {  
        for(int i = 0; num[i] == '0'; num++) ;  //去前导0  
        len = strlen(num);  
        for(int i = 0; i < len; i++) s[i] = num[len-i-1] - '0';  
        return *this;  
    }  
    bign operator + (const bign &b) const //+  
    {  
        bign c;  
        c.len = 0;  
        for(int i = 0, g = 0; g || i < max(len, b.len); i++)  
        {  
            int x = g;  
            if(i < len) x += s[i];  
            if(i < b.len) x += b.s[i];  
            c.s[c.len++] = x % 10;  
            g = x / 10;  
        }  
        return c;  
    }  
    bign operator += (const bign &b)  
    {  
        *this = *this + b;  
        return *this;  
    }  
    void clean()  
    {  
        while(len > 1 && !s[len-1]) len--;  
    }  
    bign operator * (const bign &b) //*  
    {  
        bign c;  
        c.len = len + b.len;  
        for(int i = 0; i < len; i++)  
        {  
            for(int j = 0; j < b.len; j++)  
            {  
                c.s[i+j] += s[i] * b.s[j];  
            }  
        }  
        for(int i = 0; i < c.len; i++)  
        {  
            c.s[i+1] += c.s[i]/10;  
            c.s[i] %= 10;  
        }  
        c.clean();  
        return c;  
    }  
    bign operator *= (const bign &b)  
    {  
        *this = *this * b;  
        return *this;  
    }  
    bign operator - (const bign &b)  
    {  
        bign c;  
        c.len = 0;  
        for(int i = 0, g = 0; i < len; i++)  
        {  
            int x = s[i] - g;  
            if(i < b.len) x -= b.s[i];  
            if(x >= 0) g = 0;  
            else  
            {  
                g = 1;  
                x += 10;  
            }  
            c.s[c.len++] = x;  
        }  
        c.clean();  
        return c;  
    }  
    bign operator -= (const bign &b)  
    {  
        *this = *this - b;  
        return *this;  
    }  
    bign operator / (const bign &b)  
    {  
        bign c, f = 0;  
        for(int i = len-1; i >= 0; i--)  
        {  
            f = f*10;  
            f.s[0] = s[i];  
            while(f >= b)  
            {  
                f -= b;  
                c.s[i]++;  
            }  
        }  
        c.len = len;  
        c.clean();  
        return c;  
    }  
    bign operator /= (const bign &b)  
    {  
        *this  = *this / b;  
        return *this;  
    }  
    bign operator % (const bign &b)  
    {  
        bign r = *this / b;  
        r = *this - r*b;  
        return r;  
    }  
    bign operator %= (const bign &b)  
    {  
        *this = *this % b;  
        return *this;  
    }  
    bool operator < (const bign &b)  
    {  
        if(len != b.len) return len < b.len;  
        for(int i = len-1; i >= 0; i--)  
        {  
            if(s[i] != b.s[i]) return s[i] < b.s[i];  
        }  
        return false;  
    }  
    bool operator > (const bign &b)  
    {  
        if(len != b.len) return len > b.len;  
        for(int i = len-1; i >= 0; i--)  
        {  
            if(s[i] != b.s[i]) return s[i] > b.s[i];  
        }  
        return false;  
    }  
    bool operator == (const bign &b)  
    {  
        return !(*this > b) && !(*this < b);  
    }  
    bool operator != (const bign &b)  
    {  
        return !(*this == b);  
    }  
    bool operator <= (const bign &b)  
    {  
        return *this < b || *this == b;  
    }  
    bool operator >= (const bign &b)  
    {  
        return *this > b || *this == b;  
    }  
    string str() const  
    {  
        string res = "";  
        for(int i = 0; i < len; i++) res = char(s[i]+'0') + res;  
        return res;  
    }  
};  
  
istream& operator >> (istream &in, bign &x)  
{  
    string s;  
    in >> s;  
    x = s.c_str();  
    return in;  
}  
  
ostream& operator << (ostream &out, const bign &x)  
{  
    out << x.str();  
    return out;  
}  
  
int main()  
{  
    bign x, k;  
    
    int t;
    scanf("%d",&t);
    while(t--)  
    {  
        cin>>x;
        
        k="1";
        while(1){
        
        bign temp=x*k;
        
        int sum=0;
        for(int i=0;i<temp.len;i++)
        sum+=temp.s[i];
        
        if(sum%233==0){
        	cout<<k.str()<<endl;
        	break;
        }
        
        k*=10;
        k+=1;
        
        }
        
    }  
    return 0;  
}  








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值