Let S be a sequence of integers s1, s2, ..., sn Each integer is is associated with a weight by the following rules:
(1) If is is negative, then its weight is 0.
(2) If is is greater than or equal to 10000, then its weight is 5. Furthermore, the real integer value of si is si−10000 . For example, if si is 10101, then is is reset to 101 and its weight is 5.
(3) Otherwise, its weight is 1.
A non-decreasing subsequence of S is a subsequence si1, si2, ..., sik, with i1<i2 ... <ik, such that, for all 1≤j<k, we have sij<sij+1.
A heaviest non-decreasing subsequence of S is a non-decreasing subsequence with the maximum sum of weights.
Write a program that reads a sequence of integers, and outputs the weight of its
heaviest non-decreasing subsequence. For example, given the following sequence:
80 75 73 93 73 73 10101 97 −1 −1 114 −1 10113 118
The heaviest non-decreasing subsequence of the sequence is <73,73,73,101,113,118> with the total weight being 1+1+1+5+5+1=14. Therefore, your program should output 14 in this example.
We guarantee that the length of the sequence does not exceed 2∗105
Input Format
A list of integers separated by blanks:s1, s2,...,sn
Output Format
A positive integer that is the weight of the heaviest non-decreasing subsequence.
样例输入
80 75 73 93 73 73 10101 97 -1 -1 114 -1 10113 118
样例输出
14
题目来源
题意:带权重的最长不下降子序列……
解题思路:由于权重很小,直接把数重复多遍即可。例如 1 权重为 5 那么就变成 1 1 1 1 1 然后再求最长不下降子序列。要用nlogn的算法……
#include<iostream>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long int ll;
const int INF=(1<<30);
int a[2000005];
int d[2000005];
int main(){
int n=1;
int temp;
while(~scanf("%d",&temp)){
if(temp>=10000){
temp-=10000;
a[n++]=temp;
a[n++]=temp;
a[n++]=temp;
a[n++]=temp;
a[n++]=temp;
}
else{
if(temp<0){
;//负数直接去掉这个数就好了
}
else{
a[n++]=temp;
}
}
}
d[1]=a[1];
int len=1;
for (int i=2;i<=n;i++)
{
if (a[i]>=d[len]) d[++len]=a[i];
else
{
int j=upper_bound(d+1,d+len+1,a[i])-d;
d[j]=a[i];
}
}
printf("%d\n",len);
return 0;
}