弱分类器的强势体:逻辑回归算法与推导

原创 2016年08月30日 01:35:31

 逻辑回归的函数表达式为 

 

 用极大似然估计求解

 每个样本发生的后验概率为

 

则所以样本发生总概率即似然函数为

    

L(θ)即为目标函数,-L(θ)即为loss函数,求-L(θ)最小

对数L(θ)函数为


θ求导,即

无法求解。

用梯度下降法逼近最佳值,这里用的是梯度上升法,因为要求L(θ)最大值,其实道理一样。


整体梯度上升算法:

初始化wT=1

重复直至收敛:

计算整体梯度(l(θ)/θ)

根据θ+α*l(θ)/θ)来更新回归系数wT

随机梯度上升算法:

初始化wT=1

重复直至收敛:

计算随机每个样本梯度(∂l(θ)/∂θ)

根据θ+α*(∂l(θ)/∂θ)来更新回归系数wT


逻辑回归的优点是实现简单,分类快。缺点是容易欠拟合,只能处理二分类问题(加上softmax优化可用于多分类),但是必须是线性可分的数据。

具体代码实现见我的github链接:https://github.com/AlanLin2015/Machine-Learning/tree/master/Logistics%20regressions

相关文章推荐

【Spark Mllib】逻辑回归——垃圾邮件分类器与maven构建独立项目

使用SGD算法逻辑回归的垃圾邮件分类器 1 package com.oreilly.learningsparkexamples.scala 2 3 import org.apache.sp...

逻辑回归分类器(Logistic Regression Classifier)

Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性,也用来进行分类。 在分类的情形下,经过学习之后的LR分类器其实就是一组权值w0,w1,....

用梯度下降实现逻辑回归分类器

转载自:http://online.cambridgecoding.com/notebooks/eWReNYcAfB/implementing-logistic-regression-classifi...

tensorflow入门(4)逻辑回归分类器

1、逻辑回归 Logistic回归是一种广义线性模型(generalized linear model),一般用于分类问题。其因变量可以是二分类的,也可以是多分类的。 如果因变量是连续的,就...

(理解)线性回归, 逻辑回归和线性分类器,Softmax回归。

(理解)线性回归, 逻辑回归和线性分类器,Softmax回归。

量价线性模型假设-基于Adaboost和线性回归弱分类器

前两篇的文章中我演示了如何进行预测,但是预测的准确率一直停留在50%上下,好一点的有60%,IR就不用说了,有多有少,可操作性比较差。今天从另一个角度解释一下为什么这么难预测。先从一个有趣的题目来入手...
  • mtaxot
  • mtaxot
  • 2016年08月08日 11:43
  • 732

【Iris】【Keras】神经网络分类器和【scikit-learn】逻辑回归分类器的构建

针对鸢尾花(Iris)数据集,基于scikit-learn训练logistic Regression分类器,基于Keras构建并训练三层前馈神经网络分类器,对比两者的正确率差异。 Keras深度学习库...

基于超出内存可加载范围的数据集的逻辑回归分类器LR分类器

假如你想创建一个机器学习模型,但却发现你的输入数据集与你的计算机内存不相符?对于多机器的计算集群环境中通常可以使用如Hadoop和Apache Spark分布式计算工具。然而,Apache Spark...

关于Adaboos选择最优弱分类器过程的理解

特征的设计在此不做解释,随着研究的深入,很多学者丰富和改善了以前的那些特征,最原始的矩形特征为例: 所谓的弱分类器其实是由特征f、阈值theta和一个决定不等号方向的p所决定...
  • lyzmyy
  • lyzmyy
  • 2015年09月20日 14:48
  • 1196
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:弱分类器的强势体:逻辑回归算法与推导
举报原因:
原因补充:

(最多只允许输入30个字)