BZOJ 2527: [Poi2011]Meteors 整体二分

原创 2017年01月16日 21:29:52

题目大意:给定一个环,环上每个位置有一个国家的基地,每次流星雨会让一段区间每个收获到一个数值的收益,给定每个国家的需要收益总数,求出每个国家最早在第几次流星雨之后能获得要求的收益。
题解:这道题有好多个国家都要求出答案,而且每个国家的答案都具有单调性,所以我们想到了整体二分,不过最变态的是时间复杂度的证明,我们首先要将给定区间每个国家都扫一遍所有领土上的收益之和,然后相加,看上去很大的样子,但是我们可以这么想,整体二分最多分出logn层,每层都包括所有国家,每个国家都要扫一遍,也就是这个环全部查询一遍,每层的查询也就是mlogn的时间复杂度,再加上logn层,一共是mlognlogn,再算一下修改的时间复杂度,我们维护一个树状数组来存标记,查询每个点就获取所有父亲的标记之和,这样每次修改时间是logn的,由于是二分先在左面然后到右面,所以二分出来的时间的走向大致是从左到右的On的扫描,所以总的修改时间复杂度为nlogn,这样这道题的最大时间复杂度就是mlongnlongn,对于题目数据范围可以搞,这题就可以水过了。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<iomanip>
#include<ctime>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
double c[1000000];
long long n,m,k;
struct change
{
    int l,r,v;
}changes[1000000];
inline void add_val(int wz,double v)
{
    int t=wz;
    while(t)
    {
        c[t]+=v;
        t-=(t&(-t));
    }
}
void add_val(int l,int r,double v)
{
    add_val(r,v);
    add_val(l-1,-v);
}
inline double search_ans(int wz)
{
    int t=wz;
    double re=0;
    while(t<=m)
    {
        re+=c[t];
        t+=(t&(-t));
    }
    return re;
}
long long ans[1000000];
long long now=0;
int fir[1000000];
int nex[1000000];
int q[1000000];
int nq[1000000];
int needs[1000000];
void zterfen(int l,int r,int x,int y)
{
    if(l>r || x>y) return;
    long long mid=x+y>>1;
    while(now<mid)
    {
        now++;
        if(changes[now].l<=changes[now].r) add_val(changes[now].l,changes[now].r,changes[now].v);
        else add_val(1,changes[now].r,changes[now].v),add_val(changes[now].l,m,changes[now].v);
    }
    while(now>mid)
    {
        if(changes[now].l<=changes[now].r) add_val(changes[now].l,changes[now].r,-changes[now].v);
        else add_val(1,changes[now].r,-changes[now].v),add_val(changes[now].l,m,-changes[now].v);
        now--;
    }
    int nr=r;
    int nl=l;
    for(int i=l;i<=r;i++)
    {
        int u=q[i];
        double re=0;
        for(int o=fir[u];o;o=nex[o]) re+=search_ans(o);
        //cout<<re<<" "<<needs[u]<<endl;
        if(re<needs[u]) nq[nr--]=u;
        else
        {
            nq[nl++]=u;
            ans[u]=now;
        }
    }
    memcpy(q+l,nq+l,sizeof(q[0])*(r-l+1));
    zterfen(l,nl-1,x,mid-1);
    zterfen(nl,r,mid+1,y);
}
int main()
{
    scanf("%lld%lld",&n,&m);
    for(int i=1;i<=m;i++)
    {
        int x;
        scanf("%d",&x);
        nex[i]=fir[x];
        fir[x]=i;
    }
    for(int i=1;i<=n;i++) scanf("%lld",&needs[i]);
    scanf("%lld",&k);
    for(int i=1;i<=k;i++)
        scanf("%d%d%d",&changes[i].l,&changes[i].r,&changes[i].v);
    for(int i=1;i<=n;i++) q[i]=i;
    zterfen(1,n,1,k);
    for(int i=1;i<=n;i++)
    {
        if(!ans[i]) printf("NIE\n");
        else printf("%d\n",ans[i]);
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

BZOJ 2527 [Poi2011]Meteors [整体二分+线段树]

BZOJ 2527 [Poi2011]Meteors [整体二分+线段树]

[BZOJ2527][Poi2011][整体二分][树状数组]Meteors

整体二分区间[l,r]为当前处理修改操作区间,即陨石雨的区间,[L,R]为询问操作区间,即每个国家,那么执行[l,r]区间的修改,对于[L,R]中的每个国家,用树状数组查询收集到的陨石,如果大于希望获...
  • Coldef
  • Coldef
  • 2017年02月17日 22:42
  • 165

【BZOJ】2527 [Poi2011]Meteors 整体二分+树状数组

题目传送门 这题的整体二分还是挺好想到的,代码也挺好写的。(比BZOJ3110好写多……) 取当期的陨石波数的一半加入树状数组中,判断当前每个国家拥有的陨石数是否达到需求量,若达到则放到左区间中,也就...
  • lyfsb
  • lyfsb
  • 2017年07月11日 09:43
  • 119

2527: [Poi2011]Meteors 整体二分+树状数组

答案显然是具有二分性的,操作是区间加和单点查询,并且每个国家是独立的,我们考虑整体二分。 每次二分一个midmid,将[1,mid][1,mid]的操作区间都加入答案,然后分治。 容易想到用可持久...

BZOJ 2527 [Poi2011] Meteors

整体二分+树状数组

【BZOJ 2527】 [Poi2011]Meteors

整体二分~

bzoj2527: [Poi2011]Meteors

整体二分;#include #define rep(i,k,n) for(int i=k;i

【POI2011】【BZOJ2527】Meteors

Description Byteotian Interstellar Union (BIU) has recently discovered a new planet in a nearby gal...

BZOJ 2527: [Poi2011]Meteors

以前抄别人代码写过的一道整体二分,这次比较容易的更清晰而且更深刻的理解了整体二分...
  • QWsin
  • QWsin
  • 2017年02月15日 20:29
  • 414

BZOJ2527: [Poi2011]Meteors

这个。。。一开始用的是longlong 然后改成int就wa了。。。。 时间垫底。。。。。 可怕 全局分治  然后用线段树维护的时候直接永久化标记  不用下传 然后这一题和上一...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:BZOJ 2527: [Poi2011]Meteors 整体二分
举报原因:
原因补充:

(最多只允许输入30个字)