POJ 2481 Cows 题解

题意
给你N个区间,问对于每一个区间i在这N个区间里存在多少个区间j使得i是j的真子集
思路
先对所有区间按第一关键字右端点降序第二关键字左端点升序的顺序排列,这样保证处理一个区间时符合条件的区间只会出现在它之前,用树状数组记录左端点的区间和,每一次只需要找左端点不超过现在这个左端点的数量,再把现在这个左节点加进去,需要注意的是还要减去有多少已经统计的跟当前区间范围一样的区间,因为是排好序的所以这个用一个变量记一下就好
代码
#include <cstdio>
#include <algorithm>
using namespace std;
int BIT[100002];
int ans[100001];
typedef struct block
{
    int S;
    int E;
    int id;
}block;
bool cmp(block a,block b)
{
    if(a.E!=b.E)
        return a.E>b.E;
    if(a.S!=b.S)
        return a.S<b.S;
    return a.id<b.id;
}
block cow[100001];
int lowbit(int x)
{
    return x&(-x);
}
void add(int x,int d)
{
    while(x<=100001)
    {
        BIT[x]+=d;
        x+=lowbit(x);
    }
}
int sum(int x)
{
    int ans=0;
    while(x>0)
    {
        ans+=BIT[x];
        x-=lowbit(x);
    }
    return ans;
}
int main()
{
    int N,cnt;
    while(1)
    {
        scanf("%d",&N);
        if(N==0)
            break;
        for(int i=0;i<N;i++)
            scanf("%d%d",&cow[i].S,&cow[i].E);
        for(int i=0;i<N;i++)
            cow[i].id=i+1;
        sort(cow,cow+N,cmp);
        cnt=0;
        for(int i=0;i<N;i++)
        {
            if(i!=0&&cow[i].S==cow[i-1].S&&cow[i].E==cow[i-1].E)
                cnt++;
            else cnt=0;
            ans[cow[i].id]=sum(cow[i].S+1)-cnt;
            add(cow[i].S+1,1);
        }
        for(int i=1;i<=N-1;i++)
            printf("%d ",ans[i]);
        printf("%d\n",ans[N]);
        for(int i=1;i<100001;i++)
            BIT[i]=0;
    }
    return 0;
}
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值