离散数学(1)

转载 2007年09月13日 18:25:00
 

前言

课程性质:计算机数学基础

课程安排:三个学期教授三个部分

                                                                                                            第一部分:离散数学          第一篇:数理逻辑

                            第二篇:集合论

                            第三篇:图论 代数系统

第二部分:计算数学

第三部分:组合数学

 

学习目的:1、初步掌握现代数学的观点和方法;

                2、初步掌握处理离散结构和方法,提高计算机系统设计和程序设计的逻辑数字的能力;

                3、初步掌握计算机在进行数的处理时的方法和计算;

                       4、培养学习抽象思维和缜密思考的能力;

第一篇  数理逻辑

第一章  命题逻辑

§1.1   命题和命题联结词

一.命题:

定义:具有确定真值的表达判断的陈述句称为命题。

说明:命题的真值:作为命题所表达的判断只有两个结果:正确和错误,此结果称为     

        命题的真值。

             命题是正确的,称此命题的真值为真;命题是错误的,称此命题的真值为假。

         真值为真的命题称为真命题 ;真值为假的命题称为假命题。

      其它类型的句子,如疑问句、祈使句、感叹句均没有真假意义,因为均不是命

        题。

        在数理逻辑中,命题的真值的真和假,有时分别用10来表达,也有时分别

        TF来表达。

命题的分类:

        原子命题:不能分解成更简单的命题的命题。

        复合命题:由若干个原子命题用命题联结词、标点符号联结起来的命题。

       

110是整数。            原子命题

2)北京是我们祖国的首都。                  原子命题

3)雪是黑的。                 原子命题

4)煤是白的。                 原子命题

5)今天是7号。  在一定条件下是真命题(如果今天是7号)。

61+11=100     在一定条件下是真命题(在二进制中)。

7)我学英语,或者学法文。       复合命题

8)如果 天气好,我就去游泳。  复合命题

9)向右看齐!   祈使句  非命题

10)请勿吸烟! 祈使句  非命题

11)你吃饭了吗?疑问句   非命题

12)你上网了吗?疑问句   非命题

13)本命题是假的。悖论

14)我正在说谎。   悖论

15)我不给所有自己给自己理发的人理发,但是却会给所有自己不给自己理发的人理发。悖论

 

        命题标识符:用大写字母PQRP1P2L来表示命题,这些大写字母称

                    为命题标识符。

        命题常量:用命题标识符表示的确定的命题称为命题常量,它有确定的真值。

        命题变量:表示任何一个命题的标识符,称为命题变量,它有不确定的真值。

二.命题联结词

常见联结词

否定、合取、析取、蕴含、等价和异或

1. 否定   符号:

P是命题, P读作“非P”。

P真值表为  

P

P

  0

  1

  1

  0

   否定的性质         

                      双重否定律         P P

说明:1 P是一元联结词

所谓一元联结词就是联结一个命题的联结词。

           2 念作“等值”,表示该符号两边的两个命题在任何情况下真值相同。

2. 合取    符号:

      PQ是命题

      P Q  读作“PQ”,“P合取Q”。

      P Q  真值表

  P   Q

 P  Q

  0   0

   0

  0   1

   0

  1   0

   0

  1   1

   1

   例:P:今天下雨。Q:今天刮风。则P Q  :今天下雨且刮风。

合取的性质

1)        幂等律         P P P

2)        交换律         P Q Q P

3)        结合律       (P Q) C P (Q C)  

4)        零一律         P 0  0

5)        同一律         P 1 P

6)        否定律        P P 0

    3. 析取    符号:

          PQ是命题,记作P Q ,读作“PQ”,“P析取Q”。

          P Q  真值表

  P  Q

 P Q

  0   0

   0

  0   1

   1

  1   0

   1

  1   1

   1

例:P:今天下雨。Q:今天刮风。则  P Q :今天下雨或刮风。

析取的性质:

1)        幂等律       P P P

2)        交换律       P Q Q P

3)        结合律       (P Q) C P (Q C)

4)        同一律       P 0 P

5)        零一律       P 1 1

6)        否定律       P P 0

7)        吸收律       P (P Q) P,   P (P Q) P

8)        分配律       P (Q C) (P Q) (P C)         P  (Q C) (P Q)  (P C)

9)        德、摩根律       (P Q) P Q,  (P Q) P Q

说明:(1 混合运算只能用分配律,不能用结合律。例:P (P Q)P  (Q C)不等值。

2 的分配律:P  (Q C) (P Q)  (P C),形如乘与加的分配律P× (Q+C)

3)可兼或与不可兼或

           可兼或:明天下雨或刮风。

           不可兼或:今天晚上去电影院看电影,或在家看电视。

    4.蕴含        符号:

          PQ是命题

          P Q  读作“P蕴含Q”,“如果PQ”,“当P,则Q”,“PQ的充分条件”。

         例:P:我去上海。       Q:我给你买衣服。

P Q:如果我去上海,就给你买衣服。

PQ      我没去上海,也没给你买衣服。          P Q

PQ      我没去上海,但没给你买衣服。          P Q

PQ      我去了上海,但没给你买衣服。          P Q

PQ      我没去上海,也没给你买衣服。          P Q

  P Q  真值表

  P  Q

 P Q

  0   0

   1

  0   1

   1

  1   0

   0

  1   1

   1

P也称为前件;Q称为后件。

前件为假时,P Q必为真;

后件为真时,P Q必为真。

蕴含的性质

1)        归化:P Q P Q           所谓归化就是用 表示其它联结词。

2)        P Q Q P

证明:

P    Q

P

Q P

P Q

0    0

1

1

1

0   1

1

1

1

1   0

0

0

0

1   1

0

1

1

在全部四种情况下,P Q Q P的真值表相同,所以P Q Q P

3) P Q P Q

例:将下列命题符号化

1) 如果1+23,则太阳从东边升起              P Q

2) 如果1+23,则太阳从东边升起              P Q

3) 如果1+23,则太阳从东边升起              P Q

4) 如果1+23,则太阳从东边升起              P Q

P:1+2=3

Q:表示太阳从东边升起

说明(1)蕴涵不存在交换律、结合律

      P QQ P不等值

    P Q RP Q P)等值

        (2)在数理逻辑中,即使

     PQ没有内在联系      P Q仍有意义

5. 等价   符号:

PQ是命题

读作“P等价于Q”,“ P当且仅当Q”,“PQ的充要条件”。

          P Q  真值表

  P  Q

 P Q

  0   0

   1

  0   1

   0

  1   0

   0

  1   1

   1

等价的性质P Q (P Q) (Q P)( P Q) (P Q) (P Q) ( P Q

1)        交换律:P Q Q P

2)        结合律:(P Q R P (Q R)

3)        P Q (P Q) (Q P)

4)        归化:P Q ( P Q) (P Q) (P Q) ( P Q)

 

 

证明结合律

 

 

 

 

PQR

P Q

P Q R

Q R

P (Q R)

000

1

0

1

0

001

1

1

0

1

010

0

1

0

1

011

0

0

1

0

100

0

1

1

1

101

0

0

0

0

110

1

0

0

0

111

1

1

1

1

左右两边在全部八种情况下均相等,所以两边等值,(P Q R P (Q R)

说明:

1)        是逻辑联结词,而 是公式关系符。AB是命题,A B仍是命题,而A B不是命题。

2)        PQ两命题,没有内在联系      P Q仍有意义。

例:2+2=5的充要条件是太阳从西边升起。       

        该命题为真

6. 不可兼或(异或)

      两个公式PQ的异或是复合命题,

          记作“P Q

          读作“P异或Q”,“P不可兼析取Q”。

      不可兼或就是两个命题不可能同时为真,当且仅当一个为真,一个为假时,为真。

     

      例:(1)今天下雨或刮风。    (可兼或)

         2)今天第一节课是语文课或数学课。    (不可兼或)

         3)他现在在301室或302室。    (不可兼或)

      

             

                    P Q  真值表

P  Q

P Q

0   0

0

0   1

1

1   0

1

1   1

0

   与或的区别:P1Q1时,P Q为假。

   性质:(1P Q Q P    交换律

        2)(P Q R P Q R    结合律

        3P Q R P Q P R    的分配律

        4P Q P Q P Q

                  P Q P Q

        5P Q P Q

 

三.命题公式:

1.            命题公式

   由命题标识符、逻辑联结词和圆括号按照一定的正确规则组成的合式,简称公式。

   命题公式的规定:

(1)单个命题变项是合式公式。

(2)如果A是合式公式,则 A是合式公式。

(3)如果AB是合式公式,则A B A BA BA BA B也是合式公式。

(4)当且仅当有限次运用(1)(2)(3)所得到的符号串是合式公式。

 

   逻辑联结词的运算优先次序依次为:

                     

   例:(P Q),P Q R), P Q R)是公式

      P QP P QP 不是公式

       P Q R)的括号可以省略

      P Q R 的括号不能省略

2.            命题变项的指派(赋值)

公式(P Q P Q)对命题变项PQR没有真值指定,公式没有确定的真值。

指派(赋值):命题公式中出现n个不同的命题变项P1LPn ,对这n个命题给定一组真值指定称为这个公式的一个指派或称为一个赋值。

若一个公式中出现n个不同的命题变项,每个变项分别可以取成10,那么该公式共有个2n不同的指派。

例:前面公式共有PQR三个不同命题变项,则共有23 =8个指派。

     

P

Q

R

0

0

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

 

3.            公式的真值表

列出公式的所有指派及其相应的公式真值形成的表格称为公式的真值表

例:PCQ R)的真值表

P    Q    R

Q R

P Q R

0    0    0

0

1

0    0    1

0

1

0    1    0

0

1

0    1    1

1

1

1    0    0

0

0

1    0    1

0

0

1    1    0

0

0

1    1    1

1

1

 

公式真值表对我们进行证明以及判断公式的恒真、恒假起很大作用

4.            两公式的等值

给定两公式ABAB中共出现n个不同的命题变项,对于所有的个2n不同的指派,AB两公式的真值均相同,记A B,读作“AB等值”。

说明:

等值与等价不是一回事

等价是命题联结词,是A B公式,在某些指派下为真,某些指派下为假。

等值不是逻辑联结词是公式关系符,A B描述了AB两公式之间的关系,      只有“成立”,“不成立”的区别。

5.            全功能联结词组

定义了六个联结词,某些联结词可以同其他联结词替换

例:P Q P Q

P Q P Q P Q

P Q P Q P Q

 

可以用 等代换

 

一个联结词集合,若对于任何一个公式均可以用该集合中的联结词来等值比较,就称他为全功能联结词组联结功能完备集

如果该集合任意去掉一个联结词,就不再具备这种特性,就称为最小全功能联结词组最小功能完备集

例:{ }是全功能联结词组

又因P Q= P Q

{ }{ }是最小全功能联结词组

 

         第一节小结

         必须熟练掌握:什么是命题

              什么是命题逻辑联结词

              命题联结词的真值表的定义及命题联结词的性质             

 

 

§1.2   命题公式与赋值

命题公式:简单讲就是由命题表示符,逻辑联结词,括号按正确的规律联结起来,形成的符号串。

公式的指派:一个公式中如果出现n个不同的命题变项,那么此公式就有2n个公式指派。

公式真值表:将所有的公式指派列出来,并且相对应的列出公式的真值所得到的表格。

例:求下列公式的真值表

1 P Q

2)(P Q P

3 P Q P Q

4)(P Q R

5)(P P Q)) R

6 P Q Q R

 

六个公式的真值表如下:

1 P Q

P    Q

P Q

0    0

1

0    1

1

1    0

0

1    1

1

 

2)(P Q P

P    Q

P Q

P Q P

0    0

0

0

0    1

0

0

1    0

0

0

1    1

1

0

3 P Q P Q

P Q R

P Q

P Q

P Q

P Q P Q

0 0 0

0

1

1

1

0 0 1

0

1

1

1

0 1 0

0

1

1

1

0 1 1

0

1

1

1

1 0 0

0

1

1

1

1 0 1

0

1

1

1

1 1 0

1

0

0

1

1 1 1

1

0

0

1

 

4)(P Q R

P    Q    R

Q

P Q

P Q R

0    0    0

1

0

1

0    0    1

1

0

1

0    1    0

0

0

1

0    1    1

0

0

1

1    0    0

1

1

0

1    0    1

1

1

1

1    1    0

0

0

1

1    1    1

0

0

1

 

5 P Q Q R

P    Q    R

P Q

P Q

P Q Q R

  0    0    0

1

0

0

  0    0    1

1

0

0

  0    1    0

1

0

0

  0    1    1

1

0

0

  1    0    0

0

1

0

  1    0    1

0

1

0

  1    1    0

1

0

0

  1    1    1

1

0

0

 

6)(P P Q)) R

P    Q    R

P Q

P P Q

P P Q)) R

0    0    0

0

1

1

0    0    1

0

1

1

0    1    0

1

1

1

0    1    1

1

1

1

1    0    0

1

1

1

1    0    1

1

1

1

1    1    0

1

1

1

1    1    1

1

1

1

 

 

   命题公式的分类:

永真式(重言式):公式在一切赋值下的真值均为真。

永假式(矛盾式):公式在一切赋值下的真值均为假。

可满足式:  如公式不是矛盾式就是可满足式,即至少存在一个赋值使公式为真。

仅可满足式:既不是矛盾式,又不是重言式的公式,即至少存在一个指派使公式为真,至少存在一个指派使公式为假。

 

 

 

            ì  矛盾式

      公式  í            ì   重言式

î         可满足式  í

             î   仅可满足式

 

说明:

(1)公式若不是永真式未必是永假式。

(2)如公式G是永真式,则公式 G是永假式(反之也成立)。

(3)证明公式是永真式和永假式的方法:

方法之一:使用真值表

方法之二:

        否定律: P P 1(永真式)

                P P 0(永假式)

        零一律:P 0 0(永假式)

                P 1 1(永真式)

 

     第二节小结

     讲解了公式的分类,永真式、永假式及其判断方法

 

 

相关文章推荐

南邮离散数学实验1 (简单版) 根据真值求真值表和主范式

#include #include using namespace std; int const MAX = 1e6; short true_value[MAX]; //真值 short true...

利用真值表法求主合取范式及主析取范式的实现

利用真值表法求主析取范式及主析取范式的实现(C++) 功能:用户可输入合式公式(包含!&|以及圆括号),程序即可输出变元真值表及主合取范式及主析取范式 《离散数学》南京邮电大学学习期间,离散数学实...

南邮离散数学实验 利用真值表法求取主析取范式以及主合取范式的实现

一、    实验目的和要求 内容: 编程实现用真值表法求取任意数量变量的合式公式的主析取范式和主合取范式。 要求: 能够列出任意合式公式的真值表并给出相应主析取和主合取范式。 内容: 编程实现用...

「离散数学」 打印任意命题公示的真值表和主范式

课本是高等教育出版社出版的《离散数学及其应用》。 程序会自动分析输入的表达式,并且列出真值表,最后打印出主析取范式和主合取范式,最多支持256 个变元。 主要用到的算法:中缀表达式转后缀表达式、后缀表...

离散数学输入表达式打印真值表和主析/合取范式

这是我们学校离散数学的作业题目,我用JAVA写的,不废话,上代码:package lisanExperiment; import java.io.BufferedReader; import jav...
  • diaotai
  • diaotai
  • 2016年09月17日 21:38
  • 914

离散数学 求命题公式的主范式

实现功能:输入命题公式的合式公式,求出公式的真值表,并输出该公式的主合取范式和主析取范式。 输入:命题公式的合式公式 输出:公式的主析取范式和主析取范式,输出形式为:“ mi ∨ mj ; Mi ∧ ...

离散数学之主析取范式,主合取范式

离散数学上机实验,给定一个命题公式,求其主析取范式,主合取范式,能力有限,参考了我学长的一篇博客,并进行了许多优化。 本次离散数学实验,我学到了许多东西,也看了自己的不足之处 1).我深刻地体会到在...

离散数学实践:真值表与范式

根据合式公式的真值表与主合取范式与主析取范式的关系来求。在命题逻辑中,合式公式的真值表的应用非常广泛。列合式公式真值表的步骤如下:(1)找出合式公式中出现的所有命题变项。(2)按照二进制的顺序给出命题...
  • utimes
  • utimes
  • 2015年04月09日 09:57
  • 1540

利用真值表法求取主析取范式以及主合取范式的实现

本程序可以实现任意输入表达式,变元数最多可为3个,即可输出主析取式和主合取式。 规定符号: ! 否定   | 析取    & 合取 -> 条件     双条件 #include #inc...
  • s89QL
  • s89QL
  • 2015年10月10日 20:53
  • 3298

[离散] 编程求命题公式真值表

[离散] 编程求命题公式真值表概述 真值表是离散数学中的一个重要概念,由真值表我们能求得任意命题公式的主析取范式和主合取范式。本文将用C语言编写一个求任意命题公式真值表的程序...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:离散数学(1)
举报原因:
原因补充:

(最多只允许输入30个字)