HBase Architecture 101 - Storage

原创 2011年01月11日 17:58:00

One of the more hidden aspects of HBase is how data is actually stored. While the majority of users may never have to bother about it you may have to get up to speed when you want to learn what the various advanced configuration options you have at your disposal mean. "How can I tune HBase to my needs?", and other similar questions are certainly interesting once you get over the (at times steep) learning curve of setting up a basic system. Another reason wanting to know more is if for whatever reason disaster strikes and you have to recover a HBase installation.

In my own efforts getting to know the respective classes that handle the various files I started to sketch a picture in my head illustrating the storage architecture of HBase. But while the ingenious and blessed committers of HBase easily navigate back and forth through that maze I find it much more difficult to keep a coherent image. So I decided to put that sketch to paper. Here it is.

Please note that this is not a UML or call graph but a merged picture of classes and the files they handle and by no means complete though focuses on the topic of this post. I will discuss the details below and also look at the configuration options and how they affect the low-level storage files.

The Big Picture

So what does my sketch of the HBase innards really say? You can see that HBase handles basically two kinds of file types. One is used for the write-ahead log and the other for the actual data storage. The files are primarily handled by the HRegionServer 's. But in certain scenarios even the HMaster will have to perform low-level file operations. You may also notice that the actual files are in fact divided up into smaller blocks when stored within the Hadoop Distributed Filesystem (HDFS). This is also one of the areas where you can configure the system to handle larger or smaller data better. More on that later.

The general flow is that a new client contacts the Zookeeper quorum (a separate cluster of Zookeeper nodes) first to find a particular row key. It does so by retrieving the server name (i.e. host name) that hosts the -ROOT- region from Zookeeper. With that information it can query that server to get the server that hosts the .META. table. Both of these two details are cached and only looked up once. Lastly it can query the .META. server and retrieve the server that has the row the client is looking for.

Once it has been told where the row resides, i.e. in what region, it caches this information as well and contacts the HRegionServer hosting that region directly. So over time the client has a pretty complete picture of where to get rows from without needing to query the .META. server again.

Note: The HMaster is responsible to assign the regions to each HRegionServer when you start HBase. This also includes the "special" -ROOT- and .META. tables.

Next the HRegionServer opens the region it creates a corresponding HRegion object. When the HRegion is "opened" it sets up a Store instance for each HColumnFamily for every table as defined by the user beforehand. Each of the Store instances can in turn have one or more StoreFile instances, which are lightweight wrappers around the actual storage file called HFile . A HRegion also has a MemStore and a HLog instance. We will now have a look at how they work together but also where there are exceptions to the rule.

Stay Put

So how is data written to the actual storage? The client issues a HTable.put(Put) request to the HRegionServer which hands the details to the matching HRegion instance. The first step is now to decide if the data should be first written to the "Write-Ahead-Log" (WAL) represented by the HLog class. The decision is based on the flag set by the client using Put.writeToWAL(boolean) method. The WAL is a standard Hadoop SequenceFile (although it is currently discussed if that should not be changed to a more HBase suitable file format) and it stores HLogKey 's. These keys contain a sequential number as well as the actual data and are used to replay not yet persisted data after a server crash.

Once the data is written (or not) to the WAL it is placed in the MemStore . At the same time it is checked if the MemStore is full and in that case a flush to disk is requested. When the request is served by a separate thread in the HRegionServer it writes the data to an HFile located in the HDFS. It also saves the last written sequence number so the system knows what was persisted so far. Let"s have a look at the files now.


HBase has a configurable root directory in the HDFS but the default is /hbase . You can simply use the DFS tool of the Hadoop command line tool to look at the various files HBase stores.

01. $ hadoop dfs -lsr /hbase/docs
02. ...
03. drwxr-xr-x   - hadoop supergroup          0 2009-09-28 14:22 /hbase/.logs
04. drwxr-xr-x   - hadoop supergroup          0 2009-10-15 14:33 /hbase/.logs/srv1.foo.bar,60020,1254172960891
05. -rw-r--r--   3 hadoop supergroup      14980 2009-10-14 01:32 /hbase/.logs/srv1.foo.bar,60020,1254172960891/hlog.dat.1255509179458
06. -rw-r--r--   3 hadoop supergroup       1773 2009-10-14 02:33 /hbase/.logs/srv1.foo.bar,60020,1254172960891/hlog.dat.1255512781014
07. -rw-r--r--   3 hadoop supergroup      37902 2009-10-14 03:33 /hbase/.logs/srv1.foo.bar,60020,1254172960891/hlog.dat.1255516382506
08. ...
09. -rw-r--r--   3 hadoop supergroup  137648437 2009-09-28 14:20 /hbase/docs/1905740638/oldlogfile.log
10. ...
11. drwxr-xr-x   - hadoop supergroup          0 2009-09-27 18:03 /hbase/docs/999041123
12. -rw-r--r--   3 hadoop supergroup       2323 2009-09-01 23:16 /hbase/docs/999041123/.regioninfo
13. drwxr-xr-x   - hadoop supergroup          0 2009-10-13 01:36 /hbase/docs/999041123/cache
14. -rw-r--r--   3 hadoop supergroup   91540404 2009-10-13 01:36 /hbase/docs/999041123/cache/5151973105100598304
15. drwxr-xr-x   - hadoop supergroup          0 2009-09-27 18:03 /hbase/docs/999041123/contents
16. -rw-r--r--   3 hadoop supergroup  333470401 2009-09-27 18:02 /hbase/docs/999041123/contents/4397485149704042145
17. drwxr-xr-x   - hadoop supergroup          0 2009-09-04 01:16 /hbase/docs/999041123/language
18. -rw-r--r--   3 hadoop supergroup      39499 2009-09-04 01:16 /hbase/docs/999041123/language/8466543386566168248
19. drwxr-xr-x   - hadoop supergroup          0 2009-09-04 01:16 /hbase/docs/999041123/mimetype
20. -rw-r--r--   3 hadoop supergroup     134729 2009-09-04 01:16 /hbase/docs/999041123/mimetype/786163868456226374
21. drwxr-xr-x   - hadoop supergroup          0 2009-10-08 22:45 /hbase/docs/999882558
22. -rw-r--r--   3 hadoop supergroup       2867 2009-10-08 22:45 /hbase/docs/999882558/.regioninfo
23. drwxr-xr-x   - hadoop supergroup          0 2009-10-09 23:01 /hbase/docs/999882558/cache
24. -rw-r--r--   3 hadoop supergroup   45473255 2009-10-09 23:01 /hbase/docs/999882558/cache/974303626218211126
25. drwxr-xr-x   - hadoop supergroup          0 2009-10-12 00:37 /hbase/docs/999882558/contents
26. -rw-r--r--   3 hadoop supergroup  467410053 2009-10-12 00:36 /hbase/docs/999882558/contents/2507607731379043001
27. drwxr-xr-x   - hadoop supergroup          0 2009-10-09 23:02 /hbase/docs/999882558/language
28. -rw-r--r--   3 hadoop supergroup        541 2009-10-09 23:02 /hbase/docs/999882558/language/5662037059920609304
29. drwxr-xr-x   - hadoop supergroup          0 2009-10-09 23:02 /hbase/docs/999882558/mimetype
30. -rw-r--r--   3 hadoop supergroup      84447 2009-10-09 23:02 /hbase/docs/999882558/mimetype/2642281535820134018
31. drwxr-xr-x   - hadoop supergroup          0 2009-10-14 10:58 /hbase/docs/compaction.dir

The first set of files are the log files handled by the HLog instances and which are created in a directory called .logs underneath the HBase root directory. Then there is another subdirectory for each HRegionServer and then a log for each HRegion .

Next there is a file called oldlogfile.log which you may not even see on your cluster. They are created by one of the exceptions I mentioned earlier as far as file access is concerned. They are a result of so called "log splits". When the HMaster starts and finds that there is a log file that is not handled by a HRegionServer anymore it splits the log copying the HLogKey 's to the new regions they should be in. It places them directly in the region's directory in a file named oldlogfile.log . Now when the respective HRegion is instantiated it reads these files and inserts the contained data into its local MemStore and starts a flush to persist the data right away and delete the file.

Note: Sometimes you may see left-over oldlogfile.log.old (yes, there is another .old at the end) which are caused by the HMaster trying repeatedly to split the log and found there was already another split log in place. At that point you have to consult with the HRegionServer or HMaster logs to see what is going on and if you can remove those files. I found at times that they were empty and therefore could safely be removed.

The next set of files are the actual regions. Each region name is encoded using a Jenkins Hash function and a directory created for it. The reason to hash the region name is because it may contain characters that cannot be used in a path name in DFS. The Jenkins Hash always returns legal characters, as simple as that. So you get the following path structure:


In the root of the region directory there is also a .regioninfo holding meta data about the region. This will be used in the future by an HBase fsck utility (see HBASE-7 ) to be able to rebuild a broken .META. table. For a first usage of the region info can be seen in HBASE-1867 .

In each column-family directory you can see the actual data files, which I explain in the following section in detail.

Something that I have not shown above are split regions with their initial daughter reference files. When a data file within a region grows larger than the configured hbase.hregion.max.filesize then the region is split in two. This is done initially very quickly because the system simply creates two reference files in the new regions now supposed to host each half. The name of the reference file is an ID with the hashed name of the referenced region as a postfix, e.g. 1278437856009925445.3323223323 . The reference files only hold little information: the key the original region was split at and wether it is the top or bottom reference. Of note is that these references are then used by the HalfHFileReader class (which I also omitted from the big picture above as it is only used temporarily) to read the original region data files. Only upon a compaction the original files are rewritten into separate files in the new region directory. This also removes the small reference files as well as the original data file in the original region.

And this also concludes the file dump here, the last thing you see is a compaction.dir directory in each table directory. They are used when splitting or compacting regions as noted above. They are usually empty and are used as a scratch area to stage the new data files before swapping them into place.


So we are now at a very low level of HBase's architecture. HFile 's (kudos to Ryan Rawson) are the actual storage files, specifically created to serve one purpose: store HBase's data fast and efficiently. They are apparently based on Hadoop's TFile (see HADOOP-3315 ) and mimic the SSTable format used in Googles BigTable architecture. The previous use of Hadoop's MapFile 's in HBase proved to be not good enough performance wise. So how do the files look like?

The files have a variable length, the only fixed blocks are the FileInfo and Trailer block. As the picture shows it is the Trailer that has the pointers to the other blocks and it is written at the end of persisting the data to the file, finalizing the now immutable data store. The Index blocks record the offsets of the Data and Meta blocks. Both the Data and the Meta blocks are actually optional. But you most likely you would always find data in a data store file.

How is the block size configured? It is driven solely by the HColumnDescriptor which in turn is specified at table creation time by the user or defaults to reasonable standard values. Here is an example as shown in the master web based interface:

{NAME => 'docs', FAMILIES => [{NAME => 'cache', COMPRESSION => 'NONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'false'}, {NAME => 'contents', COMPRESSION => 'NONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'false'}, ...

The default is "64KB" (or 65535 bytes). Here is what the HFile JavaDoc explains:

"Minimum block size. We recommend a setting of minimum block size between 8KB to 1MB for general usage. Larger block size is preferred if files are primarily for sequential access. However, it would lead to inefficient random access (because there are more data to decompress). Smaller blocks are good for random access, but require more memory to hold the block index, and may be slower to create (because we must flush the compressor stream at the conclusion of each data block, which leads to an FS I/O flush). Further, due to the internal caching in Compression codec, the smallest possible block size would be around 20KB-30KB."

So each block with its prefixed "magic" header contains either plain or compressed data. How that looks like we will have a look at in the next section.

One thing you may notice is that the default block size for files in DFS is 64MB, which is 1024 times what the HFile default block size is. So the HBase storage files blocks do not match the Hadoop blocks. Therefore you have to think about both parameters separately and find the sweet spot in terms of performance for your particular setup.

One option in the HBase configuration you may see is hfile.min.blocksize.size . It seems to be only used during migration from earlier versions of HBase (since it had no block file format) and when directly creating HFile during bulk imports for example.

So far so good, but how can you see if a HFile is OK or what data it contains? There is an App for that!

The HFile.main() method provides the tools to dump a data file:

01. $ hbase org.apache.hadoop.hbase.io.hfile.HFile
02. usage: HFile  [-f <arg>] [-v] [-r <arg>] [-a] [-p] [-m] [-k]
03.   -a,--checkfamily    Enable family check
04.   -f,--file <arg>     File to scan. Pass full-path; e.g.
05.                       hdfs://a :9000/hbase/.META./12/34
06.   -k,--checkrow       Enable row order check; looks for out-of-order keys
07.   -m,--printmeta      Print meta data of file
08.   -p,--printkv        Print key/value pairs
09.   -r,--region <arg>   Region to scan. Pass region name; e.g. '.META.,,1'
10.   -v,--verbose        Verbose output; emits file and meta data delimiters
11. </arg></arg></arg></arg>

Here is an example of what the output will look like (shortened here):

01. $ hbase org.apache.hadoop.hbase.io.hfile.HFile -v -p -m -f /
02.    hdfs://srv1.foo.bar :9000/hbase/docs/999882558/mimetype/2642281535820134018
04. Scanning -> hdfs://srv1.foo.bar :9000/hbase/docs/999882558/mimetype/2642281535820134018
05. ...
06. K: /x00/x04docA/x08mimetype/x00/x00/x01/x23y/x60/xE7/xB5/x04 V: text/x2Fxml
07. K: /x00/x04docB/x08mimetype/x00/x00/x01/x23x/x8C/x1C/x5E/x04 V: text/x2Fxml
08. K: /x00/x04docC/x08mimetype/x00/x00/x01/x23xz/xC08/x04 V: text/x2Fxml
09. K: /x00/x04docD/x08mimetype/x00/x00/x01/x23y/x1EK/x15/x04 V: text/x2Fxml
10. K: /x00/x04docE/x08mimetype/x00/x00/x01/x23x/xF3/x23n/x04 V: text/x2Fxml
11. Scanned kv count -> 1554
13. Block index size as per heapsize: 296
14. reader=hdfs://srv1.foo.bar :9000/hbase/docs/999882558/mimetype/2642281535820134018, /
15.    compression=none, inMemory=false, /
16.    firstKey=US6683275_20040127/mimetype:/1251853756871/Put, /
17.    lastKey=US6684814_20040203/mimetype:/1251864683374/Put, /
18.    avgKeyLen=37, avgValueLen=8, /
19.    entries=1554, length=84447
20. fileinfoOffset=84055, dataIndexOffset=84277, dataIndexCount=2, metaIndexOffset=0, /
21.    metaIndexCount=0, totalBytes=84055, entryCount=1554, version=1
22. Fileinfo:
24. MAX_SEQ_ID_KEY = 32041891
25. hfile.AVG_KEY_LEN = /x00/x00/x00/x25
26. hfile.AVG_VALUE_LEN = /x00/x00/x00/x08
27. hfile.COMPARATOR = org.apache.hadoop.hbase.KeyValue/x24KeyComparator
28. hfile.LASTKEY = /x00/x12US6684814_20040203/x08mimetype/x00/x00/x01/x23x/xF3/x23n/x04

The first part is the actual data stored as KeyValue pairs, explained in detail in the next section. The second part dumps the internal HFile.Reader properties as well as the Trailer block details and finally the FileInfo block values. This is a great way to check if a data file is still healthy.


In essence each KeyValue in the HFile is simply a low-level byte array that allows for "zero-copy" access to the data, even with lazy or custom parsing if necessary. How are the instances arranged?

The structure starts with two fixed length numbers indicating the size of the key and the value part. With that info you can offset into the array to for example get direct access to the value, ignoring the key - if you know what you are doing. Otherwise you can get the required information from the key part. Once parsed into a KeyValue object you have getters to access the details.

Note: One thing to watch out for is the difference between KeyValue.getKey() and KeyValue.getRow() . I think for me the confusion arose from referring to "row keys" as the primary key to get a row out of HBase. That would be the latter of the two methods, i.e. KeyValue.getRow() . The former simply returns the complete byte array part representing the raw "key" as colored and labeled in the diagram.

This concludes my analysis of the HBase storage architecture. I hope it provides a starting point for your own efforts to dig into the grimy details. Have fun!

Update: Slightly updated with more links to JIRA issues. Also added Zookeeper to be more precise about the current mechanisms to look up a region.

Update 2: Added details about region references.

Update 3: Added more details about region lookup as requested.

版权声明:本文为博主原创文章,未经博主允许不得转载。 http://blog.csdn.net/macyang/article/details/6129625

HBase Architecture 101 - Storage

One of the more hidden aspects of HBase is how data is actually stored. While the majority of user...
  • jixianqiuxue
  • jixianqiuxue
  • 2013年09月22日 15:54
  • 736

HBase Architecture 101 - Write-ahead-Log

文章来源:http://www.larsgeorge.com/2010/01/hbase-architecture-101-write-ahead-log.htmlWhat is the Write-...
  • macyang
  • macyang
  • 2011年01月11日 17:59
  • 1064

duplicate symbols for architecture arm64 导入的类库字符重复

移除掉 -ObjC  亲测可用 Try remove the "-ObjC" linker flag from the "Other Linker Flags" section of build se...
  • qq_29846663
  • qq_29846663
  • 2016年12月16日 15:47
  • 3273

Exchange Storage Architecture

26 out of 31 rated this helpful - Rate this topic   Topic Last Modified: 2005-05-23 Exchange ser...
  • mhfh611
  • mhfh611
  • 2014年02月18日 09:14
  • 523


HBase存储架构 英文原文:http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html HBase最隐秘的...
  • kingzone_2008
  • kingzone_2008
  • 2013年01月10日 12:43
  • 1889

iOS报错:108 duplicate symbols for architecture arm64

报错: 108 duplicate symbols for architecture arm64 由于项目中导入了相同的.a文件造成,删除掉多余的保留一个就行了。...
  • MiAo_EM
  • MiAo_EM
  • 2017年02月07日 14:07
  • 1287

Designing Data Storage Architecture - datasync

http://www.infoq.com/news/2011/10/sql-azure-data-sync Microsoft has announced a preview release...
  • riverlau
  • riverlau
  • 2011年12月29日 00:00
  • 246

Hbase Architecture[上]

Hbase Architecture概述: 序言 seek VS Transfer 2.1 B+树 2.2 Log-Structured Merge-Trees storage 3...
  • yjq_java
  • yjq_java
  • 2016年07月20日 17:09
  • 270

Hbase Architecture 译文

  • daidodo
  • daidodo
  • 2008年02月24日 14:45
  • 4332


HBase在分布式部署上采用master/slave的方式,主要包含3大功能组件,分别是:RegionServer、MasterServer和ClientLibrary 在分布式存储上使用的是Had...
  • JavaMan_chen
  • JavaMan_chen
  • 2012年01月13日 09:02
  • 3797
您举报文章:HBase Architecture 101 - Storage