关闭

poj 2446 Chessboard

标签: poj二分图
144人阅读 评论(0) 收藏 举报
分类:

Description

Alice and Bob often play games on chessboard. One day, Alice draws a board with size M * N. She wants Bob to use a lot of cards with size 1 * 2 to cover the board. However, she thinks it too easy to bob, so she makes some holes on the board (as shown in the figure below).

We call a grid, which doesn’t contain a hole, a normal grid. Bob has to follow the rules below:
1. Any normal grid should be covered with exactly one card.
2. One card should cover exactly 2 normal adjacent grids.

Some examples are given in the figures below:

A VALID solution.

An invalid solution, because the hole of red color is covered with a card.

An invalid solution, because there exists a grid, which is not covered.

Your task is to help Bob to decide whether or not the chessboard can be covered according to the rules above.

Input

There are 3 integers in the first line: m, n, k (0 < m, n <= 32, 0 <= K < m * n), the number of rows, column and holes. In the next k lines, there is a pair of integers (x, y) in each line, which represents a hole in the y-th row, the x-th column.

Output

If the board can be covered, output “YES”. Otherwise, output “NO”.

Sample Input

4 3 2
2 1
3 3

Sample Output

YES

Hint

A possible solution for the sample input.

Key To Problem

题目大意:给定一个nm的方格,问是否可以用一些12的方块在有一些格点无法覆盖的情况下将剩余格点全部覆盖。
题解:将这个方格想象成类似国际象棋棋盘的东西,则每个黑格子与之相邻的必定是一个白格子,这样,就可以构造出一个二分图,如果方格中两个点相邻且没有坏点,就可以将这两个格子连边,最后求方格的最大匹配就是最多可以放上的方块数量。

Code

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 35
using namespace std;
struct ss
{
    int next,to;
};
ss Edge[N*N*2];
int n,m,k,tot;
bool used[N*N];
bool map[N][N];
bool ll[N*N];
int head[N*N];
int f[N*N];

void clear()
{
    tot=0;
    memset(head,0,sizeof(head));
    memset(map,false,sizeof(map));
    memset(ll,0,sizeof(ll));
}

void add(int x,int y)
{
    Edge[++tot].next=head[x];
    Edge[tot].to=y;
    head[x]=tot;
}

bool dfs(int u)
{
    for(int i=head[u];i;i=Edge[i].next)
    {
        int to=Edge[i].to;
        if(!used[to])
        {
            used[to]=true;
            if(f[to]==-1||dfs(f[to]))
            {
                f[to]=u;
                return true;
            }
        }
    }
    return false;
}

int hungary()
{
    int cnt=0;
    memset(f,-1,sizeof(f));
    for(int i=1;i<=n*m;i++)
    {
        if(ll[i])continue;
        memset(used,0,sizeof(used));
        if(dfs(i))cnt++;
    }
    return cnt;
}

int main()
{
    while(scanf("%d%d%d",&n,&m,&k)!=EOF)
    {
        clear();
        for(int i=1;i<=k;i++)
        {
            int x,y;
            scanf("%d%d",&y,&x);
            map[x][y]=true;
        }
        int pp=0;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                ll[++pp]=map[i][j];
                if(map[i][j])continue;
                if(i-1>0&&!map[i-1][j])
                {
                    int x=(i-2)*m+j;
                    if((i+j)&1)add(pp,x);
                    else add(x,pp);
                }
                if(j-1>0&&!map[i][j-1])
                {
                    int x=(i-1)*m+j-1;
                    if((i+j)&1)add(pp,x);
                    else add(x,pp);
                }
            }
        }
        if(hungary()*2==n*m-k)puts("YES");
        else puts("NO");
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:25345次
    • 积分:926
    • 等级:
    • 排名:千里之外
    • 原创:71篇
    • 转载:0篇
    • 译文:0篇
    • 评论:3条
    最新评论