IEEE浮点数表示法 选择自 fireseed 的 Blog

转载 2006年06月22日 09:24:00
总的感觉计算机在最底层还是相当笨拙的,完全以来于电子传输的快捷. 

月初还在上班的时候,就天天盼望着过年放长假,然而终于熬到了过年,却发现自己的12天的长假将在碌碌无为中度过,朋友们又一个接一个的远去,心里真是拔凉拔凉的啊!最近版上的人气有点低落,连违规率(不敢说犯罪率哈,怕被人砍)都下降了不少,我想在春节这档子这是免不了的,论坛上应该有不上工作的朋友可能都回家团聚了。那像我这种无家可归的人除了眼馋别人的幸福,那就只有向仍然全力支持着我们C++/面向对象这个大家庭的兄弟姐妹们拜个年,祝来年薪水猛涨,职位高升,身体健康,家庭幸福!

最近一段时间看到版上关于C++里浮点变量精度的讨论比较多,那么我就给对这个问题有疑惑的人详细的讲解一下intel的处理器上是如何处理浮点数的。为了能更方便的讲解,我在这里只以float型为例,从存储结构和算法上来讲,double和float是一样的,不一样的地方仅仅是float是32位的,double是64位的,所以double能存储更高的精度。还要说的一点是文章和程序一样,兼容性是有一定范围的,所以你想要完全读懂本文,你最好对二进制、十进制、十六进制的转换有比较深入的了解,了解数据在内存中的存储结构,并且会使用VC.net编译简单的控制台程序。OK,下面我们开始。

大家都知道任何数据在内存中都是以二进制(1或着0)顺序存储的,每一个1或着0被称为1位,而在x86CPU上一个字节是8位。比如一个16位(2字节)的short int型变量的值是1156,那么它的二进制表达就是:00000100 10000100。由于Intel CPU的架构是Little Endian(请参数机算机原理相关知识),所以它是按字节倒序存储的,那么就因该是这样:10000100 00000100,这就是定点数1156在内存中的结构。

那么浮点数是如何存储的呢?目前已知的所有的C/C++编译器都是按照IEEE(国际电子电器工程师协会)制定的IEEE 浮点数表示法来进行运算的。这种结构是一种科学表示法,用符号(正或负)、指数和尾数来表示,底数被确定为2,也就是说是把一个浮点数表示为尾数乘以2的指数次方再加上符号。下面来看一下具体的float的规格:

float
共计32位,折合4字节
由最高到最低位分别是第31、30、29、……、0位
31位是符号位,1表示该数为负,0反之。
30-23位,一共8位是指数位。
22-0位,一共23位是尾数位。
每8位分为一组,分成4组,分别是A组、B组、C组、D组。
每一组是一个字节,在内存中逆序存储,即:DCBA

我们先不考虑逆序存储的问题,因为那样会把读者彻底搞晕,所以我先按照顺序的来讲,最后再把他们翻过来就行了。

现在让我们按照IEEE浮点数表示法,一步步的将float型浮点数12345.0f转换为十六进制代码。在处理这种不带小数的浮点数时,直接将整数部转化为二进制表示:1 11100010 01000000也可以这样表示:11110001001000000.0然后将小数点向左移,一直移到离最高位只有1位,就是最高位的1:1.11100010010000000一共移动了16位,在布耳运算中小数点每向左移一位就等于在以2为底的科学计算法表示中指数+1,所以原数就等于这样:1.11100010010000000 * ( 2 ^ 16 )好了,现在我们要的尾数和指数都出来了。显而易见,最高位永远是1,因为你不可能把买了16个鸡蛋说成是买了0016个鸡蛋吧?(呵呵,可别拿你买的臭鸡蛋甩我~),所以这个1我们还有必要保留他吗?(众:没有!)好的,我们删掉他。这样尾数的二进制就变成了:11100010010000000最后在尾数的后面补0,一直到补够23位:11100010010000000000000(MD,这些个0差点没把我数的背过气去~)

再回来看指数,一共8位,可以表示范围是0 - 255的无符号整数,也可以表示-128 - 127的有符号整数。但因为指数是可以为负的,所以为了统一把十进制的整数化为二进制时,都先加上127,在这里,我们的16加上127后就变成了143,二进制表示为:10001111
12345.0f这个数是正的,所以符号位是0,那么我们按照前面讲的格式把它拼起来:
0 10001111 11100010010000000000000
01000111 11110001 00100000 00000000
再转化为16进制为:47 F1 20 00,最后把它翻过来,就成了:00 20 F1 47。
现在你自己把54321.0f转为二进制表示,自己动手练一下!

有了上面的基础后,下面我再举一个带小数的例子来看一下为什么会出现精度问题。
按照IEEE浮点数表示法,将float型浮点数123.456f转换为十六进制代码。对于这种带小数的就需要把整数部和小数部分开处理。整数部直接化二进制:100100011。小数部的处理比较麻烦一些,也不太好讲,可能反着讲效果好一点,比如有一个十进制纯小数0.57826,那么5是十分位,位阶是1/10;7是百分位,位阶是1/100;8是千分位,位阶是1/1000……,这些位阶分母的关系是10^1、10^2、10^3……,现假设每一位的序列是{S1、S2、S3、……、Sn},在这里就是5、7、8、2、6,而这个纯小数就可以这样表示:n = S1 * ( 1 / ( 10 ^ 1 ) ) + S2 * ( 1 / ( 10 ^ 2 ) ) + S3 * ( 1 / ( 10 ^ 3 ) ) + …… + Sn * ( 1 / ( 10 ^ n ) )。把这个公式推广到b进制纯小数中就是这样:
n = S1 * ( 1 / ( b ^ 1 ) ) + S2 * ( 1 / ( b ^ 2 ) ) + S3 * ( 1 / ( b ^ 3 ) ) + …… + Sn * ( 1 / ( b ^ n ) )

天哪,可恶的数学,我怎么快成了数学老师了!没办法,为了广大编程爱好者的切身利益,喝口水继续!现在一个二进制纯小数比如0.100101011就应该比较好理解了,这个数的位阶序列就因该是1/(2^1)、1/(2^2)、1/(2^3)、1/(2^4),即0.5、0.25、0.125、0.0625……。乘以S序列中的1或着0算出每一项再相加就可以得出原数了。现在你的基础知识因该足够了,再回过头来看0.45这个十进制纯小数,化为该如何表示呢?现在你动手算一下,最好不要先看到答案,这样对你理解有好处。

 

 

 

 

 

 


我想你已经迫不及待的想要看答案了,因为你发现这跟本算不出来!来看一下步骤:1 / 2 ^1位(为了方便,下面仅用2的指数来表示位),0.456小于位阶值0.5故为0;2位,0.456大于位阶值0.25,该位为1,并将0.45减去0.25得0.206进下一位;3位,0.206大于位阶值0.125,该位为1,并将0.206减去0.125得0.081进下一位;4位,0.081大于0.0625,为1,并将0.081减去0.0625得0.0185进下一位;5位0.0185小于0.03125,为0……问题出来了,即使超过尾数的最大长度23位也除不尽!这就是著名的浮点数精度问题了。不过我在这里不是要给大家讲《数值计算》,用各种方法来提高计算精度,因为那太庞杂了,恐怕我讲上一年也理不清个头绪啊。我在这里就仅把浮点数表示法讲清楚便达到目的了。

OK,我们继续。嗯,刚说哪了?哦对对,那个数还没转完呢,反正最后一直求也求不尽,加上前面的整数部算够24位就行了:1111011.01110100101111001。某BC问:“不是23位吗?”我:“倒,不是说过了要把第一个1去掉吗?当然要加一位喽!”现在开始向左移小数点,大家和我一起移,众:“1、2、3……”好了,一共移了6位,6加上127得131(怎么跟教小学生似的?呵呵~),二进制表示为:10000101,符号位为……再……不说了,越说越啰嗦,大家自己看吧:
0  10000101  11101101110100101111001
42  F6  E9  79
79  E9  F6  42

下面再来讲如何将纯小数转化为十六进制。对于纯小数,比如0.0456,我们需要把他规格化,变为1.xxxx * (2 ^ n )的型式,要求得纯小数X对应的n可用下面的公式:
n = int( 1 + log (2)X );

0.0456我们可以表示为1.4592乘以以2为底的-5次方的幂,即1.4592 * ( 2 ^ -5 )。转化为这样形式后,再按照上面第二个例子里的流程处理:
1. 01110101100011100010001
去掉第一个1
01110101100011100010001
-5 + 127 = 122
0  01111010  01110101100011100010001
最后:
11 C7 3A 3D

另外不得不提到的一点是0.0f对应的十六进制是00 00 00 00,记住就可以了。

最后贴一个可以分析并输出浮点数结构的函数源代码,有兴趣的自己看看吧:

// 输入4个字节的浮点数内存数据
void DecodeFloat( BYTE pByte[4] )
{
 printf( "原始(十进制):%d  %d  %d  %d/n" , (int)pByte[0],
  (int)pByte[1], (int)pByte[2], (int)pByte[3] );
 printf( "翻转(十进制):%d  %d  %d  %d/n" , (int)pByte[3],
  (int)pByte[2], (int)pByte[1], (int)pByte[0] );
 bitset<32> bitAll( *(ULONG*)pByte );
 string strBinary = bitAll.to_string<char, char_traits<char>, allocator<char> >();
 strBinary.insert( 9, "  " );
 strBinary.insert( 1, "  " );
 cout << "二进制:" << strBinary.c_str() << endl;
 cout << "符号:" << ( bitAll[31] ? "-" : "+" ) << endl;
 bitset<32> bitTemp;
 bitTemp = bitAll;
 bitTemp <<= 1;
 LONG ulExponent = 0;
 for ( int i = 0; i < 8; i++ )
 {
  ulExponent |= ( bitTemp[ 31 - i ] << ( 7 - i ) );
 }
 ulExponent -= 127;
 cout << "指数(十进制):" << ulExponent << endl;
 bitTemp = bitAll;
 bitTemp <<= 9;
 float fMantissa = 1.0f;
 for ( int i = 0; i < 23; i++ )
 {
  bool b = bitTemp[ 31 - i ];
  fMantissa += ( (float)bitTemp[ 31 - i ] / (float)( 2 << i ) );
 }
 cout << "尾数(十进制):"  << fMantissa << endl;
 float fPow;
 if ( ulExponent >= 0 )
 {
  fPow = (float)( 2 << ( ulExponent - 1 ) );
 }
 else
 {
  fPow = 1.0f / (float)( 2 << ( -1 - ulExponent ) );
 }
 cout << "运算结果:" << fMantissa * fPow << endl;
}

累死了,我才发现这篇文章虽然短,然而确是最难写的。上帝,我也不是机算机,然而为什么我满眼都只有1和0?看来我也快成了黑客帝国里的那个看通迅员了……希望大家能不辜负我的一翻辛苦,帮忙up吧!

                Creamdog 于
            春节前夕 2004年1月18 下午5点完工

 

 

 

 

 

 

 

 

 

 

 

另注:

非常感谢大家的支持!

很长时间以来,我一直想对于大家对这篇文章所提出的问题做一些回答。但总是出于时间和其它的问题而初提著又意冷,感到十分抱歉。


我没有看过IEEE对于浮点数表示的详细资料,对于这些转换方法是结合我多年工作经验和编程技术,加之潜心编写测试代码、调试内存所得出的。因此这篇文章里存在问题是必然的,但我的初衷是给大家讲清楚“计算机表示浮点数为什么会存在精度问题”,而具体的转换方法并没有深究,只是将一般的转换规律做了一些阐释,对特殊情况极少提及。

我在这里非常感谢对文章提出问题的Combative(力争上游)、 yaoxinyan()、sharkhuang(爱情和程序都读不懂)三位朋友,他们指出了一些文章中的错误,并让我了解到不少细节问题,这些对于我和所有阅读这篇文章的人都是非常有帮助的!

由于原文中出错的地方不在少数,有些问题还比较严重,但以我目前所掌握的资料还不足以将这些问题一一纠正,所以只能希望其它朋友在阅读时还需稍加留意,掌握大意即可,不必深究,以免对以后的程序设计的学习造成不良影响,抱歉!


作者Blog:http://blog.csdn.net/fireseed/

相关文章推荐

IEEE制定的浮点数表示法

 基础知识: 十进制转十六进制; 十六进制转二进制; IEEE制定的浮点数表示规则; 了解: 目前C/C++编译器标准都遵照IEEE制定的浮点数表示法来进行float,double...

关于Java中的IEEE765浮点数表示法

凌宇 在www.360doc.com中转帖【IEEE浮点数表示法】,经过仔细研究,终于有点心得了。 float转十六进制: 16进制浮点数的表示方法,根据IEEE的标准,分为32位和64...

关于Java中的IEEE765浮点数表示法

在www.360doc.com中转帖【IEEE浮点数表示法】,经过仔细研究,终于有点心得了。 float转十六进制: 16进制浮点数的表示方法,根据IEEE的标准,分为32位和64位两种,参数分别...
  • zdl543
  • zdl543
  • 2014年01月06日 16:22
  • 569

IEEE Floating Point Standard (IEEE754浮点数表示法标准)

浮点数与定点数表示法是我们在计算机中常用的表示方法 所以必须要弄懂原理,特别是在FPGA里面,由于FPGA不能像在MCU一样直接用乘除法。 定点数 首先说一下简单的定点数,定点数是克服整数表示法不能表...

浮点数表示法

 1.定点数表示法 •定点数表示法通常把小数点固定在数值部分的最高位之前, 或把小数点固定在数值部分的最后。前者用来表示纯小数, 后者用于表示整数。如图3-3所示。 •在计算机中, 图示的小数点“.”...

解读IEEE标准754:浮点数表示

解读IEEE标准754:浮点数表示 如须转载请注明作者为soloforce@linuxsir.org,并请保持文章的完整和提供转载出处。 http://bbs.linuxsir.org/showt...

IEEE浮点数表示--规格化/非规格化/无穷大/NaN

1.规格化的值 以sizeof(float)=4为例: 1.5的浮点数表示: 1)1.5转换为2进制:1.1 2)转换:0.1*2^0 (整数部分的1省略) 3)得到阶码:127+0...
  • hqin6
  • hqin6
  • 2011年08月19日 13:57
  • 3372

IEEE754浮点数表示,为什么偏移码是127?为什么偏移码范围是1~254?

以单精度浮点数为例 IEEE754规定,s作为符号位,用0(正),1(负)表示,E作为阶码用移码表示(后面解释为什么用移码),M作为尾数,并规定最高位总为1,因此将1省略,简称隐藏位。 填...

解读IEEE标准754:浮点数表示

一、背景   在IEEE标准754之前,业界并没有一个统一的浮点数标准,相反,很多计算机制造商都设计自己的浮点数规则,以及运算细节。那时,实现的速度和简易性比数字的精确性更受重视。   直到198...

解读IEEE标准754:浮点数表示

一、背景   在IEEE标准754之前,业界并没有一个统一的浮点数标准,相反,很多计算机制造商都设计自己的浮点数规则,以及运算细节。那时,实现的速度和简易性比数字的精确性更受重视。   直到198...
  • yuucyf
  • yuucyf
  • 2012年04月16日 17:34
  • 841
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:IEEE浮点数表示法 选择自 fireseed 的 Blog
举报原因:
原因补充:

(最多只允许输入30个字)