Understanding Dimensional Models

转载 2011年01月24日 16:38:00

 


To analyze business data, the data needs to be mapped logically to a business model. The Siebel Analytics Server can use dimensional models for this purpose. This section discusses some of the components and variants of representative dimensional models.

usinesses are analyzed by relevant dimensional criteria, and the business model is developed from these relevant dimensions. These dimensional models form the basis of the valid business models to use with the Siebel Analytics Server. All dimensional models build on a star schema. That is, they model some measurable facts that are viewed in terms of various dimensional attributes.

imensional Hierarchies

Dimensions are categories of attributes by which the business is defined. Common dimensions are time periods, products, markets, customers, suppliers, promotion conditions, raw materials, manufacturing plants, transportation methods, media types, and time of day. Within a given dimension, there may be many attributes. For example, the time period dimension can contain the attributes day, week, month, quarter, and year. Exactly what attributes a dimension contains depends on the way the business is analyzed.

A dimensional hierarchy expresses the one-to-many relationships between attributes. Given a sample time dimension, consider the hierarchies it implies, as shown in Figure 6 .

Figure 6.  Sample Hierarchy

image

With this sample time dimension, days may aggregate, or roll up, into weeks. Months may roll up into quarters, and quarters into years. When one attribute rolls up to another, it implies a one-to-many relationship. The total of all the hierarchy definitions in this sample time dimension make up this time dimension.

These hierarchy definitions have to be specific to the business model—one model may be set up where weeks roll up into a year, and another where they do not. For example, in a model where weeks roll up into a year, it is implied that each week has exactly one year associated with it; this may not hold true for calendar weeks, where the same week could span two years.

Some hierarchies might require multiple elements to roll up, as when the combination of month and year roll up into exactly one quarter. The Siebel Analytics Server allows you to define the hierarchy definitions for your particular business, however complex, assuring that analyses will conform to your business definitions.

Factual Measures

Factual measures, or facts, are typically additive data such as dollar value or quantity sold, and they can be specified in terms of the dimensions. For example, you might ask for the sum of dollars for a given product in a given market over a given time period. Measures can also be aggregated by applying other aggregation rules, such as averaging instead of summing. Furthermore, the aggregation rules can be specific to particular dimensions. The Siebel Analytics Server allows you to define these complex, dimension-specific aggregation rules.

Star and Snowflake Models

Star and snowflake models follow the dimensional rules of one-to-many relationships. Star schemas have one-to-many relationships between the logical dimension tables and the logical fact table. Snowflake schemas have those same types of relationships, but also include one-to-many relationships between elements in the dimensions.

Bridge Tables to Model Many-to-Many Relationships

Star schemas and snowflake schemas work well for modeling a particular part of a business where there are one-to-many relationships between the dimension tables and the fact tables. However, sometimes it is necessary to model many-to-many relationships between dimension tables and fact tables.

When you need to model many-to-many relationships between dimension tables and fact tables, you can create a bridge table that resides between the fact table and the dimension table. A bridge table stores multiple records corresponding to that dimension.

To understand how a bridge table works, consider the following portion of a sample health care schema, as shown in Figure 7 .

Figure 7.  Sample Health Care Schema

image

The many-to-many relationship is that for each patient admission, there can be multiple diagnoses. For example, a patient can be diagnosed with the flu and with a broken wrist. The bridge table then needs to have a weight factor column in it so that all of the diagnoses for a single admission add up to a value of 1. The weight factor has to be calculated as part of the process of building the data. For the case of the patient diagnosed with the flu and a broken wrist, there would be one record in the Admission Records table, two records in the Diagnosis Record table, and two records in the Diagnosis table, as shown in Figure 8 .

Figure 8.  Multiple Diagnoses for One Patient

image

NOTE: This type of design can create more records in the Diagnosis Records table than in the Admission Records table. You can limit the number of records in the Diagnosis Records table by predefining groups of diagnosis and forcing each admission record to fit in one of these predefined groups.

In the Administration Tool, the Logical Table dialog box has an option you can select to specify that a table is a bridge table.

Single Table Models

For the greatest simplicity for end users, you can construct a subject area that consists of a single table. To create a single table model, you first create a logical dimensional model, and then present it as a single table schema in the Administration Tool's Presentation layer. The logical dimensional model is required to set up the necessary metadata for the Siebel Analytics Server to navigate to the proper physical tables. For information about the Presentation layer, see Creating and Maintaining the Presentation Layer in a Repository .

相关文章推荐

【Reading Notes】CP3-Understanding Lighting Models

了解光照模型在前一章节我们学习了Surface Shader,知道怎么样去改变物理材质计算不同的纹理,那么他们到底是怎么工作的呢,这个核心的部分就是光照模型。光照模型是一个计算每一个像素最终的颜色的函...

HDU 3571 N-dimensional Sphere 高斯消元法

N-dimensional Sphere Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot...

数字图像处理实验(5):PROJECT 04-01 [Multiple Uses],Two-Dimensional Fast Fourier Transform

实验要求: Objective: To further understand the well-known algorithm Fast Fourier Transform (FFT) an...

Codeforces Round #Pi (Div. 2) D. One-Dimensional Battle Ships

Alice and Bob love playing one-dimensional battle ships. They play on the field in the form of a lin...

hdu 3571 N-dimensional Sphere(高斯消元+移位乘法)

N-dimensional Sphere Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot...

CF One-Dimensional Battle Ships(set运用)

题目链接                         &...

BZOJ 2648 SJY摆棋子 K-Dimensional-Tree

题目大意:给定平面上的n个点,定义距离为曼哈顿距离,支持下列操作: 1.插入一个点 2.查询离一个点最近的点的距离 Hint说KDTree【可以】过,那么不写KDT还能写啥= = 我的CDQ分...

二维傅里叶变换和滤波(Two-Dimensional Fourier Transform and Filtering)

摘 要:本实验开发了一个2-D FFT程序包,主要实现图像的二维快速傅里叶变换、图像傅里叶频谱计算及高斯低通滤波器。傅里叶变换是数字图像处理技术的基础,是将时域信号分解为不同频率的正弦和或余弦和...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)