# 图像微分（1、2阶导数和拉普拉斯算子）

2712人阅读 评论(0)

## 1 一阶导数

，前向差分 forward differencing                  （1.2）

，中心差分 central differencing                     （1.3）

1）前向差分的Matlab实现

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 function dimg = mipforwarddiff(img,direction) % MIPFORWARDDIFF     Finite difference calculations  % %   DIMG = MIPFORWARDDIFF(IMG,DIRECTION) % %  Calculates the forward-difference for a given direction %  IMG       : input image %  DIRECTION : 'dx' or 'dy' %  DIMG      : resultant image % %   See also MIPCENTRALDIFF MIPBACKWARDDIFF MIPSECONDDERIV %   MIPSECONDPARTIALDERIV   %   Omer Demirkaya, Musa Asyali, Prasana Shaoo, ... 9/1/06 %   Medical Image Processing Toolbox   imgPad = padarray(img,[1 1],'symmetric','both');%将原图像的边界扩展 [row,col] = size(imgPad); dimg = zeros(row,col); switch (direction)    case 'dx',    dimg(:,1:col-1) = imgPad(:,2:col)-imgPad(:,1:col-1);%x方向差分计算， case 'dy',    dimg(1:row-1,:) = imgPad(2:row,:)-imgPad(1:row-1,:);  otherwise, disp('Direction is unknown'); end; dimg = dimg(2:end-1,2:end-1);

2）中心差分的Matlab实现

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 function dimg = mipcentraldiff(img,direction) % MIPCENTRALDIFF     Finite difference calculations  % %   DIMG = MIPCENTRALDIFF(IMG,DIRECTION) % %  Calculates the central-difference for a given direction %  IMG       : input image %  DIRECTION : 'dx' or 'dy' %  DIMG      : resultant image % %   See also MIPFORWARDDIFF MIPBACKWARDDIFF MIPSECONDDERIV %   MIPSECONDPARTIALDERIV   %   Omer Demirkaya, Musa Asyali, Prasana Shaoo, ... 9/1/06 %   Medical Image Processing Toolbox   img = padarray(img,[1 1],'symmetric','both'); [row,col] = size(img); dimg = zeros(row,col); switch (direction)     case 'dx',         dimg(:,2:col-1) = (img(:,3:col)-img(:,1:col-2))/2;     case 'dy',         dimg(2:row-1,:) = (img(3:row,:)-img(1:row-2,:))/2;     otherwise,         disp('Direction is unknown'); end dimg = dimg(2:end-1,2:end-1);
 1 

 1 2 I = imread('coins.png'); figure; imshow(I); Id = mipforwarddiff(I,'dx'); figure, imshow(Id);

原图像                                                   x方向1阶导数

Matlab函数

2）quiver：以箭头形状绘制梯度。注意放大下面最右侧图可看到箭头，由于这里计算横竖两个方向的梯度，因此箭头方向都是水平或垂直的。

 1 2 3 4 5 I = double(imread('coins.png')); [dx,dy]=gradient(I); magnitudeI=sqrt(dx.^2+dy.^2); figure;imagesc(magnitudeI);colormap(gray);%梯度幅值 hold on;quiver(dx,dy);%叠加梯度方向

梯度幅值                                   梯度幅值+梯度方向

## 3 二阶导数

（3.1）

## 3.1 普拉斯算子（laplacian operator）

### 3.1.2 概念

（3.2）

1）首先，其一阶差分为

2）因此，二阶差分为

3）因此，1维拉普拉斯运算可以通过1维卷积核 实现

（3.4）

### 3.1.2 应用

Matlab里有两个函数

1）del2

2）fspecial：图像处理中一般利用Matlab函数fspecial

h = fspecial('laplacian', alpha) returns a 3-by-3 filter approximating the shape of the two-dimensional Laplacian operator.
The parameter alpha controls the shape of the Laplacian and must be in the range 0.0 to 1.0. The default value for alpha is 0.2.

### 3.1.3 资源

0
0

【套餐】嵌入式Linux C编程基础
【套餐】2017软考系统集成项目——任铄
【套餐】Android 5.x顶级视频课程——李宁
【套餐】深度学习入门视频课程——唐宇迪
【直播】广义线性模型及其应用——李科
【直播】从0到1 区块链的概念到实践
【直播】计算机视觉原理及实战——屈教授
【直播】机器学习之凸优化——马博士
【直播】机器学习&数据挖掘7周实训--韦玮

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：243934次
• 积分：3039
• 等级：
• 排名：第11452名
• 原创：49篇
• 转载：110篇
• 译文：0篇
• 评论：26条
文章分类
最新评论