机器学习(一)--- 监督学习之回归

本文介绍了监督学习的基础,聚焦于线性回归和逻辑回归。通过学习Stanford大学的课程资料,理解了成本函数的概念,并探讨了线性回归中模型建立的线性关系假设,以及如何用梯度下降法优化。此外,还概述了逻辑回归的基本思想。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考学习资料:http://cs229.stanford.edu/materials.html

通过对学习,掌握的知识点包括:

  • 什么是 cost fuction
  • Linear regression的概念
  • Logistic regression的概念

============监督学习的引出==============

机器学习可以分为两个大类,一个是监督学习(supervised learning),一个是无监督学习(unsupervised learning)。监督学习的主要任务是通过给定输入样本,从而找出对应的分类或者变化的趋势,对应的术语概念就是分类和回归。之所以成为监督学习,是因为这类算法必须知道需要预测什么,即目标变量的分类信息。而无监督学习是没有类别信息的,也没有给定的目标值,需要完成的任务是将类似的对象归纳为一个类型,即聚类,或者寻找描述数据统计值得过程,即密度估计。一下是一个关于监督学习的一个例子,具体来说是实现回归: 需要预测一组房子的大小和房价之间的关系:
房价和房子大小的二维显示如下:
进行建模分析:
1、代表第i-th个特征变量,这里代表的是第i个房子的房子的大小,对应上图的横坐标
2、代表第i-th个输出变量,或者目标值,在这个例子中代表需要预测的房价信息,对应上图的纵坐标
3、这样一组值,代表一组训练样本,trainning example,很多这样的的训练样本构成训练集,trainning set
4、代表特征变量构成的空间集合,代表目标值构成的空间集合
现在需要进行的任务是,确定学习算法,确立特征变量和目标值之间的存在的某种关系,即找出映射关系:,使得函数可以很好的预测测试样本,找到与之对应的目标值。在机器学习的术语中,h称为hypothesis。因此学习的模型大致如下:
以上就是监督学习的一个典型例子,更加确切的说是回归的一个例子。接下来介绍一个解决以上问题的一个解决方案:Linear regression,线性回归

===========Linear regression===========

在Linear regression中,模型建立的出发点是特

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值