Ubantu下配置Sublime Text3---python环境的搭建

Ubuntu上配置Sublime Text3 Python开发环境
本文详述了在Ubuntu系统中如何安装和配置Sublime Text 3,特别是针对Python开发环境的设置。首先,介绍了安装Sublime Text 3及Package Control插件的步骤,接着讲解如何通过Package Control安装所需Python插件。此外,还指导了如何在Ubuntu终端安装numpy和matplotlib,以确保完整的Python科学计算和绘图环境。

因为学习机器学习算法的原因,买的参考书籍很多都是python语言进行开发的,因此也想着在Linux系统下配置python的环境。Sublime是一款非常流行的编辑器,可以添加很多小巧有用的插件,同时也可以配置成一款自己常用开发语言的IDE,所以网上有很多配置Sublime的教程,看了和学习很多教程,决定使用Sublime 3,因为便于配置python的开发环境。

  • 首先当然需要安装sublime text 3了.

在Ubantu下需要一下三条命令完成Sunlime的安装:

sudo add-apt-repository ppa:webupd8team/sublime-text-3
sudo apt-get update
sudo apt-get install sublime-text
至此 我们就安装好了了sublime text3接着我们需要去配置sublime.搜索打开sublime


  • 配置sublime

首先在sublime的控制台中输入一行配置命令,安装package control,这个插件是用于搜索和安装插件的入口:

        打开sublime控制台的方法是:view-----------> show console 

输入<

<think>我们正在处理一个关于在Ubuntu系统中部署PP-StructureV3模型的问题。根据提供的引用,我们可以获得一些线索,但需要更全面的步骤。 引用[1]提到了一个测试命令,引用[2]提到了导出配置的方法。但是,用户需要的是完整的部署步骤。 部署PP-StructureV3通常包括以下步骤: 1. 环境准备:安装Python、PaddlePaddle、PaddleOCR等。 2. 安装PP-StructureV3所需的其他依赖。 3. 下载模型(如果需要,因为PaddleOCR可能会自动下载,但也可以预先下载)。 4. 运行测试或使用API。 由于PP-StructureV3是PaddleOCR中的一个模块,我们可以通过安装PaddleOCR来使用它。 具体步骤: 1. 确保Ubuntu系统已安装Python(建议3.6+)和pip。 2. 安装PaddlePaddle(推荐使用GPU版本,但CPU版本也可以)。 3. 安装PaddleOCR及其依赖。 根据PaddleOCR官方文档,我们可以使用pip安装PaddleOCR,然后使用其提供的PP-StructureV3功能。 但是,用户提供的引用中有一个命令示例: paddleocr pp_structurev3 -i [图片URL] 这可能是通过命令行调用的方式。 因此,部署步骤可以归纳为: 步骤1:安装Python和pip Ubuntu通常自带Python,但如果没有,可以通过以下命令安装: ``` sudo apt update sudo apt install python3 python3-pip ``` 步骤2:安装PaddlePaddle 根据官方文档(https://www.paddlepaddle.org.cn/install/quick ),选择适合的版本。例如,对于CPU版本: ``` python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple ``` 步骤3:安装PaddleOCR ``` pip install paddleocr ``` 步骤4:验证安装 可以运行一个简单的Python脚本来验证,或者使用命令行。 使用命令行测试(如引用[1]所示): ``` paddleocr pp_structurev3 -i [图片路径或URL] ``` 例如,使用引用[1]中的图片: ``` paddleocr pp_structurev3 -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/pp_structure_v3_demo.png ``` 步骤5(可选):如果需要导出配置文件,可以按照引用[2]的方法,在Python中执行: ```python from paddleocr import PPStructureV3 pipeline = PPStructureV3() pipeline.export_paddlex_config_to_yaml("PP-StructureV3.yaml") ``` 然后可以修改该配置文件以适应具体需求。 注意:如果使用GPU,需要确保已安装CUDA和cuDNN,并安装对应版本的PaddlePaddle。 因此,完整的部署步骤如上所述。 现在,根据要求生成相关问题。</think>### 在Ubuntu系统中部署PP-StructureV3模型的步骤 #### 1. **环境准备** - 确保系统已安装Python 3.6+: ```bash sudo apt update sudo apt install python3 python3-pip python3-venv ``` - 创建虚拟环境(推荐): ```bash python3 -m venv pp_env source pp_env/bin/activate ``` #### 2. **安装PaddlePaddle基础框架** - 安装CPU版本: ```bash pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple ``` - 或安装GPU版本(需提前配置CUDA): ```bash pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple ``` #### 3. **安装PaddleOCR与PP-StructureV3** ```bash pip install paddleocr --upgrade ``` #### 4. **验证安装** - 运行Python交互环境: ```python from paddleocr import PPStructureV3 pipeline = PPStructureV3() print("PP-StructureV3 初始化成功!") ``` #### 5. **导出配置文件(可选)** ```python pipeline.export_paddlex_config_to_yaml("PP-StructureV3.yaml") ``` 修改生成的YAML文件可自定义模型参数[^2]。 #### 6. **执行文档分析** - 命令行调用: ```bash paddleocr pp_structurev3 -i input_image.png -o output_dir ``` - Python API调用: ```python result = pipeline(&#39;input_image.png&#39;) ``` #### 7. **性能优化建议** - GPU加速:确保安装CUDA 11.x+和cuDNN 8.x+ - 多线程处理:在YAML配置中调整`thread_count` - 模型裁剪:使用PaddleSlim工具压缩模型大小 > **注意**:首次运行会自动下载预训练模型(约1.2GB),建议保持网络畅通[^1]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值