apache.commons.beanutils.BeanUtils

apache.commons.beanutils.BeanUtils:
1.BeanUtils.copyProperty(bean, name, value):将bean中的成员变量name赋值为value;
如果成员变量为数组,如何为数据内的成员赋值呢?apache的java doc上说的很明白,就是要提供一个包含索引参数的setter,所以要将以下代码加到sampleobject的源代码中.
/**
  * set word with against
  * @param index
  * @param word
  */
 public void setwords(int index,char word){
  this.words[index] = word;
 }
如果我们要为sampleobject中的words[2]赋值为s,那么代码如下:
beanutils.copyproperty(a,"words[2]","s");

如果成员变量为map,如何为map内指定key赋值呢?同上面讲的数组的方式一样,就是要提供一个包含key参数的setter,在sampleobject中添加如下代码:
/**
  * set map with key
  * @param key
  * @param value
  */
 public void setmap(object key,object value){
  this.map.put(key,value);
 }
如果我们要将sampleobject.map中home对应值改为remote,那么代码如下:
beanutils.copyproperty(a,"map(home)","remote");

最后说下如何为嵌套属性的赋值,(所谓嵌套属性就是beana中一个成员变量是另外一个beanb,那么beanb中的属性就叫做beana的嵌套属性了.),用法如下:beanutils.copyproperty(a,"sample.display","second one");

2.beanutils.setproperty(java.lang.object bean,java.lang.string name,java.lang.object value)

如果我们只是为bean的属性赋值,使用copyproperty()就可以了;而setproperty()方法是实现beanutils.populate()机制的基础,也就是说如果我们需要自定义实现populate()方法,那么我们可以override setproperty()方法.
所以,做为一般的日常使用,setproperty()方法是不推荐使用的.
3.beanutils.populate(java.lang.object bean, java.util.map properties)

使用一个map为bean赋值,该map中的key的名称与bean中的成员变量名称相对应.注意:只有在key和成员变量名称完全对应的时候, populate机制才发生作用;但是在数量上没有任何要求,如map中的key如果是成员变量名称的子集,那么成员变量中有的而map中不包含的项将会保留默认值;同样,如果成员变量是map中key的子集,那么多余的key不会对populate的结果产生任何影响.恩,结果就是populate只针对map中key名称集合与bean中成员变量名称集合的交集产生作用.
正常用法很简单,这里略掉.
同样,这个方法也支持对数组中单个元素,map中单个元素和嵌套属性的赋值,具体做法和copyproperty()方法类似,具体如下:
 values.put("words[1]","u");
 values.put("map(home)","remote");
 values.put("sample.display",new double(5.0));
注意:apache的javadoc中,明确指明这个方法是为解析http请求参数特别定义和使用的,在正常的使用中不推荐使用.他们推荐使用beanutils.copyproperties()方法.(struts中的formbean应该是用这个方法装配的)

4.beanutils.getarrayproperty(java.lang.object bean,java.lang.string name)

获取bean中数组成员变量(属性)的值.
没什么好说的,用法很简单,略.
还是要说一句,如果我们指定的name不是数组类型的成员变量,结果会如何?会不会抛出类型错误的exception呢?回答是不会,仍然会返回一个 string的数组,数组的第一项就是name对应的值(如果不是string类型的话,jvm会自动的调用tostring()方法的).

5.beanutils.getindexedproperty(java.lang.object bean,java.lang.string name)
beanutils.getindexedproperty(java.lang.object bean,java.lang.string name,int index)

这两个方法都是获取数组成员变量(属性)中的单一元素值的方法.比如,我想得到sampleobject中words[1]的值,用法如下:
beanutils.getindexedproperty(sampleojbectinstance,"words[1]");
 beanutils.getindexedproperty(sampleojbectinstance,"words",1);
beanutils.getmappedproperty(java.lang.object bean,java.lang.string name)
beanutils.getmappedproperty(java.lang.object bean,java.lang.string name,java.lang.string key)

这两个方法是获取map成员变量中单一元素值的方法,用法与getindexedproperty()方法相似,如我想得到sampleobject中map中home对应的值,用法如下:
beanutils.getmappedproperty(sampleojbectinstance,map(home));
 beanutils.getmappedproperty(sampleojbectinstance,map,"home");
beanutils.getnestedproperty(java.lang.object bean,java.lang.string name)

获取嵌套属性值的方法,如我想得到sampleojbect中成员变量sample中的display的值,用法如下:
beanutils.getnestedproperty(sampleojbectinstance,"sample.display");
beanutils.getsimpleproperty(java.lang.object bean, java.lang.string name)
beanutils.getproperty(java.lang.object bean, java.lang.string name)
获取属性值的方法.api已经很清楚了,我唯一的问题是这个simple是什么意思.javadoc只是说了getproperty()方法中的name 参数可以为普通属性名称,数组属性名称或嵌套属性名称的一种,而getsimpleproperty()方法中的name参数应该为普通属性名称了

6.beanutils.describe(java.lang.object bean)
将一个bean以map的形式展示.以sampleobject为例,代码片段如下:
 sampleobject a = new sampleobject();
 a.setdisplay("first one");
 a.setname("a");
 a.setnum(5);
 a.setwords("goto".tochararray());
 sampleobjecta b = new sampleobjecta();
 b.setdisplay("nested property");
 b.setnum(new double(2.0));
 b.setname("samplea");
 a.setsample(b);
 try {
 map descmap = beanutils.describe(a);
 system.out.println(descmap);
 }
 ......
运行结果如下:
{num=5, display=first one, class=class beanutil.sampleobject, words=g, tag=false, sample=beanutil.sampleobjecta@be2358, map={port=80, home=localhost}, name=a}

    * 首先可以看出,除了输出sampleobject中定义的key-value外,还会包含class=class beanutil.sampleobject这一项,我想这是为了通过获得的map我们可以知道原来的bean的具体类型;
    * 其次,作为数组成员变量(属性)的words,在map中只包含了首个元素,而map类型的成员变量的输出结果到是非常令人满意.为什么明明长度为4的 words数组现在输出只有一个字符呢,我又进行了debug,并监控了words变量,发现在返回的descmap中,words对应的值的类型为 string,长度为1.
      ps:不知道是不是我使用错误,真不知道为什么会这样.
    * 最后,嵌套属性不会逐一进行输出的,除非你override了tostring()方法.

apache.commons.beanutils.beanutilsbean的关系

apache.commons.beanutils.beanutils 中每个方法是通过apache.commons.beanutils.beanutilsbean实现的, apache.commons.beanutils.beanutils中静态方法功能是默认方法,也就是最基本和最普通的,如果需要更复杂的功能实现的话,则需要使用apache.commons.beanutils.beanutilsbean中的方法. apache.commons.beanutils.beanutilsbean可以在不同的缓冲区内存在不同的实例,从而可以提供不同的服务,主要是 converter的不同.通过这个机制可以为不同的用户提供本地化的支持(我想这个在internet application上经常要用到吧).我想这也是为什么apache.commons.beanutils.beanutilsbean不是 interface而是class的原因.
总结

beanutils是利用java的反射和自醒机制来读写javabean的属性的.
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值