感受Linux

原创 2005年04月29日 01:09:00

到新公司已一月有余,本周终于开始参与到项目开发中。由于该项目需要在HP AlphaServer 的Tru64 Unix下进行开发。在设备没有运到公司之前,所有成员只好先在Linux上“ 热身”。而我也得以有机会真正近距离的审视Linux。

虽然多年前就接触过Linux,但一直没有认真的去品位她。但这一次当我见到Fedora Core 3的时候,却感到了多年未曾有了的激动。这种感觉就如同9年前当我第一次见到Windows95时一样。短短数年间Linux的Window系统尽有了如此大的进步。

呵呵,也许我真的要开始全身心追逐Linux这只脱胎换骨的小企鹅了。

linux学习过程感悟

linux系统学习感悟
  • u013289746
  • u013289746
  • 2017年04月14日 11:45
  • 466

对CNN感受野一些理解

感受野(receptive field)被称作是CNN中最重要的概念之一。为什么要研究感受野呐?主要是因为在学习SSD,Faster RCNN框架时,其中prior box和Anchor box的设计...
  • u010725283
  • u010725283
  • 2017年11月21日 15:55
  • 1496

人类视觉-感受野

在视觉通路上,视网膜上的光感受器(杆体细胞和锥体细胞)通过接受光并将它转换为输出神经信号而来影响许多神经节细胞、外膝状体细胞以及视觉皮层中的神经细胞.反过来,任何一种神经细胞(除起支持和营养作用的神经...
  • sunboyiris
  • sunboyiris
  • 2014年01月13日 19:00
  • 3093

深度学习中的感受野计算

参考链接:http://blog.csdn.net/gzq0723/article/details/53138430   http://blog.csdn.net/kuaitoukid/articl...
  • u010926891
  • u010926891
  • 2017年04月13日 16:53
  • 2218

CNN中感受野的计算

感受野(receptive field)是怎样一个东西呢,从CNN可视化的角度来讲,就是输出featuremap某个节点的响应对应的输入图像的区域就是感受野。 比如我们第一层是一个3*3的卷积核,那么...
  • kuaitoukid
  • kuaitoukid
  • 2015年07月10日 15:38
  • 25565

深度学习——感受野

感受野
  • gzq0723
  • gzq0723
  • 2016年11月12日 10:17
  • 6209

卷积网络之感受野

在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小。感受野大小可通过卷积层逐层递推往前迭代计算获得。...
  • xsd1221
  • xsd1221
  • 2016年12月15日 17:48
  • 1300

深度学习:卷积神经网络物体检测之感受野大小计算

学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于...
  • lilai619
  • lilai619
  • 2016年11月08日 14:54
  • 2560

一张图理解卷积神经网络卷积层和感受野

局部关联:每个像素点和她周边的点广联大(图像连续) 形象地说,左边是32*32*3的图像,我们让五个小朋友分别看,右边的12345小盆友分别关注图像的颜色,轮廓,纹理等等信息。 五个小朋友对应五个神经...
  • ture_dream
  • ture_dream
  • 2016年11月20日 15:16
  • 4857

感受野receptive field个人理解

先引用一种思路: 至于为什么在下式不成立: 在于我们从长度着手的处理方法,应该从下一层最多从上一层吸收的长度着手(这也是和先前的假设pad操作不能扩展信息量相对应的),用一张图解释一下: ...
  • heifan2014
  • heifan2014
  • 2017年12月17日 16:52
  • 66
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:感受Linux
举报原因:
原因补充:

(最多只允许输入30个字)