求矩阵的快速幂

题目描述:

给定一个n*n的矩阵,求该矩阵的k次幂,即P^k。

输入:

输入包含多组测试数据。
数据的第一行为一个整数T(0<T<=10),表示要求矩阵的个数。
接下来有T组测试数据,每组数据格式如下:
第一行:两个整数n(2<=n<=10)、k(1<=k<=5),两个数字之间用一个空格隔开,含义如上所示。
接下来有n行,每行n个正整数,其中,第i行第j个整数表示矩阵中第i行第j列的矩阵元素Pij且(0<=Pij<=10)。另外,数据保证最后结果不会超过10^8。

输出:

对于每组测试数据,输出其结果。格式为:
n行n列个整数,每行数之间用空格隔开,注意,每行最后一个数后面不应该有多余的空格。

样例输入:
3
2 2
9 8
9 3
3 3
4 8 4
9 3 0
3 5 7
5 2
4 0 3 0 1
0 0 5 8 5
8 9 8 5 3
9 6 1 7 8
7 2 5 7 3
样例输出:
153 96
108 81
1216 1248 708
1089 927 504
1161 1151 739
47 29 41 22 16
147 103 73 116 94
162 108 153 168 126
163 67 112 158 122
152 93 93 111 97
由于时间比较仓促,忽略题目的一些细节要求
 
#include <stdio.h>
#include <cstring>
#define T 10

struct matrix
{
	int m[T][T];
}res,origin[T];

void calmatrix(matrix ori[],int q[][2],int matrix_count);	
matrix multiply(matrix x,matrix y,int n);
int main(void)
{
	int matrix_count;
	int matrix_n_k[T][2];
	do
	{
		scanf("%d",&matrix_count);
		if(matrix_count>0)
		{
			for(int i=0;i<matrix_count;i++)
			{
				scanf("%d %d",&matrix_n_k[i][0],&matrix_n_k[i][1]);
				
				for(int j=0;j<matrix_n_k[i][0];j++)	
					for(int k=0;k<matrix_n_k[i][0];k++)
						scanf("%d",&origin[i].m[j][k]);	
			}
			calmatrix(origin,matrix_n_k,matrix_count);
			
		}
	}while(matrix_count!=0);
	
	printf("finish\n");
	return 0;
	
}

void calmatrix(matrix ori[],int q[][2],int matrix_count)
{
	int a,b;
	for(int count=0;count<matrix_count;count++)
	{
		int n=q[count][1];
		
		memset(res.m,0,sizeof(res.m));
		
		for( a=0;a<q[count][0];a++)
			res.m[a][a]=1;                  //将res.m初始化为单位矩阵 
		//这里用到二进制思想,如A^156,而156(10)=10011100(2) ,也就有A^156=>(A^4)*(A^8)*(A^16)*(A^128) 
		while(n)
		{
			
			if(n&1)
			{
				res=multiply(res,ori[count],q[count][0]);
			}
			ori[count]=multiply(ori[count],ori[count],q[count][0]);
			n>>=1;
		}
		
		for( a=0;a<q[count][0];a++)
		{	
			for( b=0;b<q[count][0];b++)
				printf("%d ",res.m[a][b]);
			printf("\n");
		}
		
	}
}

matrix multiply(matrix x,matrix y,int n)
{
	int a,b,c;
	matrix temp;
	memset(temp.m,0,sizeof(temp.m));
	
	for(a=0;a<n;a++)	
		for( b=0;b<n;b++)
			for( c=0;c<n;c++)
				temp.m[a][b]+=x.m[a][c]*y.m[c][b];
			
	return temp;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值