poj 1172 Street Race

原创 2016年05月31日 21:48:20

题目:
戳戳戳

题意:鸣谢 @NEIGHTHORN
题目大意:
给出一张有向图,有n+1个节点,分别是0……n,起点为0,终点为n,并且是完整路线。
完整路线的具有以下性能:
1.路线中的每一个点都可以从终点出发达到。
2.从路线中的每个点出发都可以到达终点。
3.终点无出边。
运动员不需要遍历完图中的每一个点,但是有些点是运动员必须经过的。
任务A: 题目给出一个完整路线(图),请编程找出所有必经之点请注意,输出必经之点时,应不包括起点和终点。
任务B: 假定赛跑必须在相邻的2天来举行。因此,要把原来给定的完整路线(图)分成两个子路线(图)。第1天从点0出发,结束于“分裂点”。第2天从“分裂点”出发,结束于点N。
题目给出一个完整路线(图)C,请编程输出所有可能的“分裂点”(任务B)。“分裂点”S一定不是起点或终点。C可被S分成两个完整的子路线:这两个子路线没有公共的箭头线,并且S是这两个子路线的唯一公共点。
输入数据:
输入数据描述一个完整路线(最多50个点,最多100个箭头),共n+1行。前面n行描述箭头的终点,其中第i行中的每一个数字表示从点i-1(1≤i≤n)出发的每一个箭头的终点,以-2作为该行的结束。最后一行(第n+1行)中有一个数字-1,表示输入结束。
输出数据:
输出两行数据,第1行表示必经点(子任务A)──首先是必经点的总数,其后是必经点的标号,标号的顺序无关紧要。第2行表示“分裂点”:首先是分裂点的总数,其后是分裂点的标号,标号出现的先后顺序无关紧要(子任务B)。
—–题目大意by WZC学长的PPT

就是
直接贴代码,写的略丑,勿怪。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
//by mars_ch
int v[101],to[101],next[101],head[101],vis[101],res[101],res2[101];
queue<int> q;
int tot,ans,num,ans2,num2,flag;
void add(int f,int t)
{
    v[tot]=f;
    to[tot]=t;
    next[tot]=head[f];
    head[f]=tot++;
}
int main()
{
    int cnt=0;
    memset(head,-1,sizeof(head));
    int x,a;
    while(scanf("%d",&x) && x!=-1)
    {
        add(cnt,x);
        while(scanf("%d",&a) && a!=-2)  add(cnt,a);
        cnt++;
    }
    for(int i=1;i<cnt;i++)    //枚举删掉的点 
    {
        memset(vis,0,sizeof(vis));
        q.push(0);
        vis[0]=1;
        vis[i]=1;
        while(!q.empty())
        {
            int temp=q.front();
            q.pop();
            vis[temp]=1;
            for(int j=head[temp];j!=-1;j=next[j])
            {
                if(!vis[to[j]]) q.push(to[j]);
            }
        }
        if(!vis[cnt])    //断点是必须是必经点,但是必经点不一定是分裂点 
        {
            flag=0;
            res[++ans]=i;
            for(int j=0;j<=cnt;j++)
            {
                if(vis[j] == 0 || j==i )
                {
                    for(int k=head[j];k!=-1;k=next[k])
                    {
                        if(vis[to[k]] == 1 && to[k]!=i)
                        {
                            flag=1;
                            break;
                        }
                    }
                }
                if(flag == 1) break;
             }
             if(flag == 0) 
             res2[++ans2]=i;
        }   
    }
    printf("%d ",ans);
    for(int i=1;i<=ans;i++) printf("%d ",res[i]);
    printf("\n") ;
    printf("%d ",ans2);
    for(int i=1;i<=ans2;i++)
        printf("%d ",res2[i]);
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

USACO Section 4.3 Street Race - 简单搜索

50个点...100条边....数据量很小...第一问就直接枚举去掉每个点看能否到达终点~~~N次BFS就ok了...     第二问~~首先第二问的点肯定是第一问的点的子集~~这个应该好想到..然...
  • kk303
  • kk303
  • 2012-01-20 19:35
  • 552

Street Race_usaco 4.3_spfa+暴力+dfs

Description给定一个图,求起点到终点间的必经点,再找一个点使图分成两个没有共点的子图 PROGRAM NAME: race3INPUT FORMATThe input file conta...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

usaco 4.3 Street Race(搜索)

Street Race IOI'95 Figure 1 gives an example of a course for a street race. You see some points, l...

USACO-Section 4.3 Street Race (枚举&&BFS)

第一问很好求,直接枚举然后判断是否能到达终点 第二问刚开始没理解题意,以为是当前点不在环上,最终明白应该是其作为起点时,不能到以其为终点的那一部分 又看了下题解,终于AC了。。。

POJ 1515 Street Directions

题意: 一幅无向图  将尽量多的无向边定向成有向边  使得图强连通  无向图保证是连通的且没有重边 思路: 桥必须是双向的  因此先求边双连通分量  并将桥保存在ans中 每个双连通分量内的边...

poj1515Street Directions【无向图->有向图 链式前向星版tarjan求桥】

纠结半天怎么用原来的模板表示边与序号的关系,map都用上了,还是一塌糊涂,然而,这是图啊……怎么能把链式前向星忘了→_→ 具体看注释 ,思路当然和那些都一样 /*********** poj151...

POJ 1320 Street Numbers 佩尔方程

POJ 1320 Street Numbers 佩尔方程网上很多份解题报告的后半段是对的,就是不知道为什么在前面选择建模的时候把等式写错了(然后后面划出来的式子就莫名其妙地又对了)。然后把题意读懂就能...

POJ 1320:Street Numbers 佩尔方程

Street Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2753   Accepted: 1...

poj 1515 Street Directions(双连通分量)

题意:给出一个连通图,边是双向边,要求令尽可能多的双向边改成单向边,并且图还是连通的(强连通)。 思路:这题其实不太难搞。我们可以想一下,那些边是一定不能改造的?没错,是桥,如果桥被改成单向边,那么...

POJ 1320-Street Numbers(解佩尔方程)

Street Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2908   ...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)